
LAB MANUAL
to Accompany

Dean DeFino
Salisbury University

Michael Bardzell
Salisbury University

defino_433130_ttl.qxd 3/2/06 10:56 AM Page 1

Michael Hirsch
Editorial Assistant
Cover Designer
Marketing Manager
Prepress and Manufacturing Carol Melville
Supplement Coordination Marianne Groth

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Copyright © 200 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. For information on obtaining permission for use
of material in this work, please submit a written request to Pearson Education, Inc.,
Rights and Contracts Department, 75 Arlington Street, Suite 300, Boston, MA 02116,
fax your request to 617-848-7047, or e-mail at http://www.pearsoned.com/legal/permis-
sions.htm.

ISBN 0-321-55647-
1 2 3 4 5 6 7 8 9 10—BB— 0 0

defino_433130_ttl.qxd 3/2/06 10:56 AM Page 2

Executive Editor
Stephanie Sellinger
Beth
Christopher Kelly

Paquin

9

X
11 10 9 8

Contents

iii

Lab Manual Introduction vii

LESSON SET 1 Introduction to Programming and the Translation Process 1

Pre-lab Reading Assignment 2
Computer Systems 2
Introduction to Programming 2
Translation Process 3
Integrated Environments 6

Pre-lab Writing Assignment 6
Fill-in-the-Blank Questions 6
Learn the Environment That You Are Working In 7

Lesson 1A 7
LAB 1.1 Opening, Compiling and Running Your First

Program 7
LAB 1.2 Compiling a Program with a Syntax Error 7
LAB 1.3 Running a Program with a Run Time Error 8

Lesson 1B 9
LAB 1.4 Working with Logic Errors 9
LAB 1.5 Writing Your First Program (Optional) 11

LESSON SET 2 Introduction to the C++ Programming Language 13

Pre-lab Reading Assignment 14
The C++ Programming Language 14
Memory 15
Variables and Constants 16
Identifiers in C++ 16
Data Types 16
Integer Data Type 16
Floating Point Data Type 17
Character Data Type 17
Boolean Data Type 17
Assignment Operator 17
Fundamental Instructions 17

Arithmetic Operators 19

Pre-lab Writing Assignment 19
Fill-in-the-Blank Questions 19

Lesson 2A 20
LAB 2.1 Working with the cout Statement 20
LAB 2.2 Working with Constants, Variables and Arithmetic

Operators 21

Lesson 2B 22
LAB 2.3 Rectangle Area and Perimeter 22
LAB 2.4 Working with Characters and Strings 22

LESSON SET 3 Expressions, Input, Output and Data Type Conversions 25

Pre-lab Reading Assignment 26
Review of the cout Statement 26
Input Instructions 26
Strings 27
Summary of storing and inputting strings 28
Formatted Output 28
Expressions 29
Precedence Rules of Arithmetic Operations 29
Converting Algebraic Expressions to C++ Expressions 30
Data Type Conversions 30
Files 31

Pre-lab Writing Assignment 32
Fill-in-the-Blank Questions 32

Lesson 3A 33
LAB 3.1 Working with the cin Statement 33
LAB 3.2 Formatting Output 35
LAB 3.3 Arithmetic Operations and Math Functions 36

Lesson 3B 37
LAB 3.4 Working with Type Casting 37
LAB 3.5 Reading and Writing to a File 38
LAB 3.6 Student Generated Code Assignments 39

LESSON SET 4 Conditional Statements 41

Pre-lab Reading Assignment 42
Relational Operators 42
The if Statement 42
The if/else Statement 43
The if/else if Statement 43
The Trailing else 44

Nested if Statements 44
Logical Operators 45
The switch Statement 46
Character & string comparisons 47

Pre-lab Writing Assignment 48
Fill-in-the-Blank Questions 48

LM_FM.qxd 4/24/03 12:51 PM Page iii

iv Contents

LESSON SET 5 Looping Statements 55

Pre-lab Reading Assignment 56
Increment and Decrement Operator 56
The while Loop 56
Counters 58
Sentinel Values 59
Data Validation 60
The do-while Loop 60
The for Loop 61
Nested Loops 63

Pre-lab Writing Assignment 64
Fill-in-the-Blank Questions 64

Lesson 5A 64
LAB 5.1 Working with the while Loop 64
LAB 5.2 Working with the do-while Loop 66

Lesson 5B 68
LAB 5.3 Working with the for Loop 68
LAB 5.4 Nested Loops 69
LAB 5.5 Student Generated Code Assignments 71

LESSON SET 6.1 Introduction to Void Functions (Procedures) 75

Pre-lab Reading Assignment 76
Modules 76
Pass by Value 78
Pass by Reference 81

Pre-lab Writing Assignment 83
Fill-in-the-Blank Questions 83

Lesson 6.1A 84
LAB 6.1 Functions with No Parameters 84
LAB 6.2 Introduction to Pass by Value 84

Lesson 6.1B 86
LAB 6.3 Introduction to Pass by Reference 86
LAB 6.4 Student Generated Code Assignments 89

Lesson 4A 48
LAB 4.1 Working with Relational Operators and the

if Statement 48
LAB 4.2 if/else and Nested if Statements 49

LAB 4.3 Logical Operators 50

Lesson 4B 51
LAB 4.4 The switch Statement 51
LAB 4.5 Student Generated Code Assignments 52

LESSON SET 6.2 Functions that Return a Value 91

Pre-lab Reading Assignment 92
Scope 92
Scope Rules 93
Static Local Variables 94
Default Arguments 94
Functions that Return a Value 96
Overloading Functions 99
Stubs and Drivers 99

Pre-lab Writing Assignment 101
Fill-in-the-Blank Questions 101

Lesson 6.2A 101
LAB 6.5 Scope of Variables 101
LAB 6.6 Parameters and Local Variables 104

Lesson 6.2B 106
LAB 6.7 Value Returning and Overloading Functions 106
LAB 6.8 Student Generated Code Assignments 110

LESSON SET 7 Arrays 113

Pre-lab Reading Assignment 114
One-Dimensional Arrays 114
Array Initialization 115
Array Processing 115
Arrays as Arguments 116
Two-Dimensional Arrays 121
Multi-Dimensional Arrays 122
Arrays of Strings 122

Pre-lab Writing Assignment 122
Fill-in-the-Blank Questions 122

Lesson 7A 123
LAB 7.1 Working with One-Dimensional Arrays 123
LAB 7.2 Strings as Arrays of Characters 126

Lesson 7B 129
LAB 7.3 Working with Two-Dimensional Arrays 129
LAB 7.4 Student Generated Code Assignments 134

LM_FM.qxd 4/24/03 12:51 PM Page iv

Contents v

LESSON SET 8 Searching and Sorting Arrays 137

Pre-lab Reading Assignment 138
Search Algorithms 138
Linear Search 138
The Binary Search 140
Sorting Algorithms 142
The Bubble Sort 143
The Selection Sort 145

Pre-lab Writing Assignment 148
Fill-in-the-Blank Questions 148

Lesson 8 149
LAB 8.1 Working with the Linear Search 149
LAB 8.2 Working with the Binary Search 150
LAB 8.3 Working with Sorts 152
LAB 8.4 Student Generated Code Assignments 156

LESSON SET 9 Pointers 157

Pre-lab Reading Assignment 158
Pointer Variables 158
Using the & Symbol 158
Using the * Symbol 159
Using * and & Together 160
Arrays and Pointers 161
Dynamic Variables 162
Review of * and & 166

Pre-lab Writing Assignment 167
Fill-in-the-Blank Questions 167

Lesson 9A 167
LAB 9.1 Introduction to Pointer Variables 167
LAB 9.2 Dynamic Memory 168

Lesson 9B 170
LAB 9.3 Dynamic Arrays 170
LAB 9.4 Student Generated Code Assignments 171

LESSON SET 10 Characters and Strings 175

Pre-lab Reading Assignment 176
Character Functions 176
Character Case Conversion 177
String Constants 178
Storing Strings in Arrays 179
Library Functions for Strings 179
The get and ignore functions 181
Pointers and Strings 184

Pre-lab Writing Assignment 186
Fill-in-the-Blank Questions 186

Lesson 10 187
LAB 10.1 Character Testing and String Validation 187
LAB 10.2 Case Conversion 190
LAB 10.3 Using getline() 192
LAB 10.4 String Functions—strcat 193
LAB 10.5 Student Generated Code Assignments 193

LESSON SET 11 Structures and Abstract Data Types 195

LESSON 11 A 205
LAB 11.1 Working with Basic Structures 205
LAB 11.2 Initializing Structures 206
LAB 11.3 Arrays of Structures 208

LESSON 11 B 209
LAB 11.4 Nested Structures 209
LAB 11.5 Student Generated Code Assignments 211

LESSON SET 12 Advanced File Operations 213

Pre-lab Reading Assignment 214
Review of Text Files 214
Opening Files 214
Reading from a File 215
Output Files 218
Files Used for Both Input and Output 219
Closing a File 220
Passing Files as Parameters to Functions 220
Review of Character Input 221
Binary Files 224
Files and Records 226
Random Access Files 228

Pre-lab Writing Assignment 231
Fill-in-the-Blank Questions 231

Lesson 12A 231
LAB 12.1 Introduction to Files (Optional) 231
LAB 12.2 Files as Parameters and Character Data 233

Lesson 12B 235
LAB 12.3 Binary Files and the write Function 235
LAB 12.4 Random Access Files 238
LAB 12.5 Student Generated Code Assignments 240

Pre-lab Reading Assignment 196
Access to Structure Members 197
Arrays of Structures 200
Initializing Structures 201
Hierarchical (Nested) Structures 202
Structures and Functions 204

Pre-lab Writing Assignment 205
Fill-in-the-Blank Questions 205

LM_FM.qxd 4/24/03 12:51 PM Page v

vi Contents

Introduction to Classes 243

Pre-lab Reading Assignment 244
Introduction to Object-Oriented Programming 244
Client and Implementation Files 246
Types of Objects 247
Implementations of Classes in C++ 247
Creation and Use of Objects 247
Implementation of Member Functions 248
Complete Program 251
Inline Member Functions 254
Introduction to Constructors 255
Constructor Definitions 256
Invoking a Constructor 256

Destructors 256
Arrays of Objects 258

Pre-lab Writing Assignment 260
Fill-in-the-Blank-Questions 260

Lesson 13A 261
LAB 13.1 Squares as a Class 261
LAB 13.2 The Circles as Class 263

Lesson 13.B 265
LAB 13.3 Arrays as Data Members of Classes 265
LAB 13.4 Arrays of Objects 267
LAB 13.5 Student Generated Code Assignment 269

APPENDIX A Visual C++ Environment 271

APPENDIX B UNIX 273

Index 277

LM_FM.qxd 4/24/03 12:51 PM Page vi

LESSON SET 13

Lab Manual Introduction

To the Student…

A closed laboratory in computer programming is a vital activity for helping
you gain valuable programming skills. Programming cannot be learned by
“spectators”. In other words, you cannot become a skilled programmer simply
by watching others do it. You must spend numerous hours working on programs
yourself. A closed laboratory experience gives you the opportunity to edit,
write, compile, build, and execute programs of varying length and complexity
under the guidance of your instructor. You will be able to reinforce concepts
learned in class with a “hands on” approach. Throughout the course, your pro-
gramming skills should steadily progress by applying knowledge learned in
class to the laboratory setting.

This lab manual is divided into chapters called “Lesson Sets”. At the begin-
ning of each lesson set you will see a Purpose section which outlines the goals
and expected outcomes of the lesson. This is immediately followed by a Procedure
section. The first two steps of this section ask you to complete the Pre-lab
Reading and Pre-lab Writing Assignments as a prerequisite to attempting the labs.
It is imperative that you do both assignments before coming to your lab session.
The laboratory exercises assume you have read and understood the key points
of the corresponding lesson. The Pre-lab Writing Assignment usually consists of
8 – 10 very simple fill in the blank questions. Once the Pre-lab Reading is com-
plete, you should have no trouble completing these questions. Your instructor may
choose to collect this assignment at the beginning of your lab session. Although
each Pre-lab Reading Assignment gives a concise overview of key concepts from
the corresponding chapter in the text, it is not a substitute for reading your text.
The text develops ideas in much more detail and also covers certain topics that
cannot be included in a closed lab due to time constraints. Hence, this lab man-
ual should be used as a supplement, not a replacement, for the text.

To the Instructor…

A closed laboratory in computer programming is a vital activity for helping stu-
dents gain valuable programming skills under your guidance. Many different
opinions concerning the content of such labs have been generated over the past
few years, ranging from programming assignments to scheduled exercises using
prepared materials. Although this manual emphasizes the latter approach and
has pre-developed code for students to complete or edit, there are assignments

vii

LM_FM.qxd 4/24/03 12:51 PM Page vii

Your instructor will tell you which lab assignments should be completed
during the lab session and which should be completed outside of class for home-
work. Although a hard copy of all code used for the lab assignments is includ-
ed at the end of each lesson set, the code is also included in electronic form on

this code rather than re-typing it from scratch.
the Web at www.aw.com/cssupport, under author “Gaddis.” You should use

that ask each student to independently create small programs which may be
assigned as lab activities or as post-lab homework. These student generated code
assignments are not intended as a substitute for larger programming assignments.
Rather, they are small programs designed to test students on the material given
in the lessons. The length of the lab activities vary from fifty minutes to two
hours, depending on the particular institution. For this reason, the manual is
divided into “Lesson Sets”, each consisting of two fifty to sixty minute lessons of
lab work. A fifty minute lab session should be able to complete an individual les-
son and a one and a half to two hour session should be enough time for an
entire lesson set. These times refer to “average classes”. It is of course impossi-
ble to set a time frame for each student in a given lab. It is natural that some
advanced students may finish a little early, while others will need more than the

The lab exercises in each lesson set are generally very simple to start and then
increase in difficulty. Consequently, the student generated code assignments,
which ask students to write complete programs, are given at the end of the sec-
ond lesson. Most lesson sets contain three such assignments, so you have some
flexibility as to how many of these programs are written during the laboratory ses-
sion. A few lessons do have one somewhat sophisticated (to a beginning pro-
grammer) student generated code assignment. Other programming assignments
may also be found at the end of each chapter of the text.

Each lesson set consists of the following:

Pre-lab Reading Assignment. This will prepare the students for material pre-
sented in the lab. This section gives a good, but brief, review of the corresponding
chapter of the text. Examples and sample code are provided throughout this sec-
tion, some of which are used in the subsequent labs. Students should thus be
required to read this section before coming to lab.

Pre-lab Writing Assignment. These consist of short and easy questions
on the reading material so that you may make sure students completed the
pre-lab reading.

Two Lessons of Lab Assignments. These are done during the lab time,

These are similar to the Purpose section given
at the beginning of each lesson set in the lab manual. However, the
objectives listed are geared more for the lab work whereas the Purpose
section in the manual refers to the Pre-lab Reading material as well. In
some lessons they are the same.

Assumptions. This section gives a brief list of what students should
already know before attempting the corresponding lab assignment. It is
generally assumed that the students have completed and understood the
previous lessons (although some of the later lessons can be skipped) and
that they have read and understood the Pre-lab Reading Assignment for
the current lesson.

viii Lab Manual Introduction

LM_FM.qxd 4/24/03 12:51 PM Page viii

suggested time frame. Each Lesson Set corresponds to a chapter from Starting Out

ister for access.

with C++: From Control Structures through Objects, Sixth Edition, by Tony Gaddis.
The one exception, however, is Chapter 6. This chapter deals with functions
and the corresponding laboratory exercises are broken into two lesson sets.

Objectives for Students.

Supplements: The following items are available at Addison-Wesley’s Instructor
one lesson per hour (or fifty minute period).

Resource Center. Visit the Instructor Resource Center at www.aw.com/irc to reg-

• Solutions to the lab exercises
• Teacher’s Notes which consist of the following:

Pre-lab Writing Assignment Solutions. This section contains the
answers to the Pre-lab Writing Assignment.

Lab Assignments. This section first lists the labs and then gives a more
detailed description of each lab. Labs are broken into the lessons in which
they are assigned.

Each instructor is encouraged to pick and choose labs based on the needs of their
individual classes. The following is a suggested outline for a 14 week course
that meets in a closed lab once a week for 50-60 minutes. This allows you to still
cover one chapter a week for most weeks. As a general rule, a one hour lab
session is enough time to complete section A of each lesson set. Assignments from
section B, including the student generated code assignments, could be given as
homework assignments.

Week 1 Lesson Set 1 Lab 1.1 Lab 1.2 Lab 1.3 Lab 1.4 (Optional Homework)

Week 2 Lesson Set 2 Lab 2.1 Lab 2.2 Lab 2.4 (Optional Homework)

Week 3 Lesson Set 3 Lab 3.1 Lab 3.2 Lab 3.3 Lab 3.5 (Optional Homework)

Week 4 Lesson Set 4 Lab 4.1 Lab 4.2 Lab 4.3 Lab 4.4 (Optional Homework)
Week 5 Lesson Set 5 Lab 5.1 Lab 5.2 Lab 5.4 (Optional Homework)

Week 6 Lesson Set 6.1 Lab 6.1 Lab 6.2 Lab 6.3 (Optional Homework)

Week 7 Lesson Set 6.2 Lab 6.5 Lab 6.6 Lab 6.7 (Optional Homework)

Week 8 Lesson Set 7 Lab 7.1 Lab 7.2 Lab 7.3 (Optional Homework)

Week 9 Lesson Set 8 Lab 8.1 Lab 8.2 Lab 8.3 (Optional Homework)

Week 10 Lesson Set 9 Lab 9.1 Lab 9.2 Lab 9.3 (Optional Homework)

Week 11 Lesson Set 10 Lab 10.1 Lab 10.2 Lab 10.3 Lab 10.4 (Optional Homework)

Week 12 Lesson Set 11 Lab 11.1 Lab 11.2 Lab 11.3 Lab 11.4 (Optional Homework)

Week 13 Lesson Set 12 Lab 12.2 Lab 12.3 Lab 12.4 (Optional Homework)

Week 14 Lesson Set 13 Lab 13.1 Lab 13.3 Lab 13.4 Lab 13.2 (Optional Homework)

For a one semester course that meets 2 hours a week in a closed lab, one lesson
set per week will cover the manual in a fourteen week semester.

Lab Manual Introduction ix

LM_FM.qxd 4/24/03 12:51 PM Page ix

LM_FM.qxd 4/24/03 12:51 PM Page x

L E S S O N S E T

Introduction to Programming
and the Translation Process

PURPOSE 1. To become familiar with the login process and the C++ environment used in the lab

2. To understand the basics of program design and algorithm development

3. To learn, recognize and correct the three types of computer errors:

syntax errors
run time errors
logic errors

4. To learn the basics of an editor and compiler and be able to compile and run
existing programs

5. To enter code and run a simple program from scratch

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

3. In the lab, students should complete Labs 1.1 through 1.4 in sequence. Your
instructor will give further instructions as to grading and completion of the lab.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment 20 min. 2

Pre-lab Writing Assignment Pre-lab reading 10 min. 6

Lesson 1A

Lab 1.1
Opening, Compiling and Pre-lab reading 20 min. 7
Running Your First Program (Including overview

of local system)

Lab 1.2
Compiling a Program Familiarity with 15 min. 7
with a Syntax Error the environment

Finished Lab 1.1

continues

1

1

LM_Chp1.qxd 4/24/03 12:29 PM Page 1

Lab 1.3
Running a Program with a Understanding of 15 min. 8
Run Time Error the three types

of errors

Lesson 1B

Lab 1.4
Working with Logic Errors Understanding of 15 min. 9

logic errors

Lab 1.5
Writing Your First Program Finished Labs 30 min. 11

1.1 through 1.4

P R E - L A B R E A D I N G A S S I G N M E N T

Computer Systems

A computer system consists of all the components (hardware and software)
used to execute the desires of the computer user. Hardware is the electronic phys-
ical components that can retrieve, process and store data. It is generally broken
down into five basic components:

Central Processing This is the unit where programs are executed. It
Unit (C.P.U.) consists of the control unit, which oversees the

overall operation of program execution and the
A.L.U. (Arithmetic/Logic Unit), which performs the
mathematical and comparison operations.

Main Memory The area where programs and data are stored for
use by the CPU

Secondary Storage The area where programs and data are filed (stored)
for use at a later time

Input Devices The devices used to get programs and data into the
computer (e.g., a keyboard)

Output Devices The devices used to get programs and data from the
computer (e.g., a printer)

Software consists of a sequence of instructions given to perform some pre-defined
task. These labs concentrate on the software portion of a computer system.

Introduction to Programming

A computer program is a series of instructions written in some computer lan-
guage that performs a particular task. Many times beginning students concentrate
solely on the language code; however, quality software is accomplished only
after careful design that identifies the needs, data, process and anticipated out-
comes. For this reason it is critical that students learn good design techniques
before attempting to produce a quality program. Design is guided by an algo-
rithm, which is a plan of attacking some problem. An algorithm is used for
many aspects of tasks, whether a recipe for a cake, a guide to study for an exam
or the specifications of a rocket engine.

Problem example: Develop an algorithm to find the average of five test grades.

2 LESSON SET 1 Introduction to Programming and the Translation Process

LM_Chp1.qxd 4/24/03 12:29 PM Page 2

An algorithm usually begins with a general broad statement of the problem.

Find the average of Five Test Grades

From here we can further refine the statement by listing commands that will
accomplish our goal.

Read in the Grades Find the Average Write out the Average

Each box (called a node) may or may not be refined further depending on its
clarity to the user. For example: Find the Average may be as refined as an
experienced programmer needs to accomplish the task of finding an average;
however, students learning how to compute averages for the first time may
need more refinement about how to accomplish the goal. This refinement
process continues until we have a listing of steps understandable to the user to
accomplish the task. For example, Find the Average may be refined into the fol-
lowing two nodes.

Total=sum of 5 grades

Starting from left to right, a node that has no refinement becomes part of the algo-
rithm. The actual algorithm (steps in solving the above program) is listed in bold.

Find the Average of Five Test Grades

Read in the Grades

Find the Average

Total = sum of 5 grades
Average = Total / 5

Write Out the Average

From this algorithm, a program can be written in C++.

Translation Process

Computers are strange in that they only understand a sequence of 1s and 0s.
The following looks like nonsense to us but, in fact, is how the computer reads
and executes everything that it does:

10010001111010101110010001110001000

can imagine how complicated programming would be if we had to learn this very
complex language. That, in fact, was how programming was done many years ago;
however, today we are fortunate to have what are called high level languages
such as C++. These languages are geared more for human understanding and thus
make the task of programming much easier. However, since the computer only
understands low level binary code (often called machine code), there must be a
translation process to convert these high level languages to machine code. This
is often done by a compiler, which is a software package that translates high level

Pre-lab Reading Assignment 3

Average=Total/5

LM_Chp1.qxd 4/24/03 12:29 PM Page 3

Because computers only use two numbers (1 and 0), this is called binary code.

languages into machine code. Without it we could not run our programs. The fig-
ure below illustrates the role of the compiler.

The compiler translates source code into object code. The type of code is often
reflected in the extension name of the file where it is located.

Example: We will write source (high level language) code in C++ and all our
file names will end with .cpp, such as:

firstprogram.cpp secondprogram.cpp

When those programs are compiled, a new file (object file) will be created that
ends with .obj, such as:

firstprogram.obj secondprogram.obj

The compiler also catches grammatical errors called syntax errors in the source
code. Just like English, all computer languages have their own set of grammar rules
that have to be obeyed. If we turned in a paper with a proper name (like John)
not capitalized, we would be called to task by our teacher, and probably made
to correct the mistake. The compiler does the same thing. If we have something
that violates the grammatical rules of the language, the compiler will give us
error messages. These have to be corrected and a grammar error free program
must be submitted to the compiler before it translates the source code into
machine language. In C++, for example, instructions end with a semicolon. The
following would indicate a syntax error:

cout << "Hi there" << endl

Since there is no semicolon at the end, the compiler would indicate an error, which
must be corrected as follows:

cout << "Hi there" << endl;

After the compile process is completed, the computer must do one more thing
before we have a copy of the machine code that is ready to be executed. Most
programs are not entirely complete in and of themselves. They need other mod-
ules previously written that perform certain operations such as data input and out-
put. Our programs need these attachments in order to run. This is the function
of the linking process. Suppose you are writing a term paper on whales and
would like a few library articles attached to your report. You would go to the
library, get a copy of the articles (assuming it would be legal to do so), and
attach them to your paper before turning it in. The linker does this to your pro-
gram. It goes to a “software library” of programs and attaches the appropriate code
to your program. This produces what is called the executable code, generated in
a file that often ends with .exe.

Example: firstprogram.exe secondprogram.exe

The following figure summarizes the translation process:

4 LESSON SET 1 Introduction to Programming and the Translation Process

High Level
Language Code
(Source Code)

Low Level Code
(Object Code)

Compiler

LM_Chp1.qxd 4/24/03 12:29 PM Page 4

Once we have the executable code, the program is ready to be run. Hopefully
it will run correctly and everything will be fine; however that is not always the
case. During “run time”, we may encounter a second kind of error called a run
time error. This error occurs when we ask the computer to do something it
cannot do. Look at the following sentence:

You are required to swim from Naples, Italy to New York in five minutes.

Although this statement is grammatically correct, it is asking someone to do the
impossible. Just as we cannot break the laws of nature, the computer cannot
violate the laws of mathematics and other binding restrictions. Asking the com-
puter to divide by 0 is an example of a run time error. We get executable code;
however, when the program tries to execute the command to divide by 0, the pro-
gram will stop with a run time error. Run time errors, particularly in C++, are usu-
ally more challenging to find than syntax errors.

Once we run our program and get neither syntax nor run time errors, are we
free to rejoice? Not exactly. Unfortunately, it is now that we may encounter the
worst type of error: the dreaded Logic error. Whenever we ask the computer to
do something, but mean for it to do something else, we have a logic error. Just
as there needs to be a “meeting of the minds” between two people for meaningful
communication to take place, there must be precise and clear instructions that gen-
erate our intentions to the computer. The computer only does what we ask it to
do. It does not read our minds or our intentions! If we ask a group of people to
cut down the tree when we really meant for them to trim the bush, we have a
communication problem. They will do what we ask, but what we asked and
what we wanted are two different things. The same is true for the computer.
Asking it to multiply by 3 when we want something doubled is an example of a

Pre-lab Reading Assignment 5

Source Code
(High Level Language

such as C++)

Compiler translates
source code into

object code.

firstprogram.cpp

Compiler

firstprogram.obj

Linker

firstprogram.exe

The .obj file contains
a translation of the

source code.

Linker links library code
with the object code

to produce the .exe file.

The .exe file is executable.

Library

LM_Chp1.qxd 4/24/03 12:29 PM Page 5

logic error. Logic errors are the most difficult to find and correct because there
are no error messages to help us locate the problem. A great deal of program-
ming time is spent on solving logic errors.

Integrated Environments

An integrated development environment (IDE) is a software package that bun-
dles an editor (used to write programs), a compiler (that translates programs) and
a run time component into one system. For example, the figure below shows a
screen from the Microsoft Visual C++ integrated environment.

Other systems may have these components separate which makes the process of
running a program a little more difficult. You should also be aware of which
Operating System you are using. An Operating System is the most important
software on your computer. It is the “grand master” of programs that interfaces
the computer with your requests. Your instructor will explain your particular sys-
tem and C++ environment so that you will be able to develop, compile and run
C++ programs on it.

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. Compilers detect errors.

2. Usually the most difficult errors to correct are the errors,
since they are not detected in the compilation process.

3. Attaching other pre-written routines to your program is done by the
process.

4. code is the machine code consisting of ones and zeroes
that is read by the computer.

5. Dividing by zero is an example of a error.

6 LESSON SET 1 Introduction to Programming and the Translation Process

LM_Chp1.qxd 4/24/03 12:29 PM Page 6

Learn the Environment That You Are Working In

The following information may be obtained from your instructor.

1. What operating system are you using?

2. What C++ environment are you working in?

3. If you are not working in an integrated environment, what are the com-
pile, run and edit commands that you will need?

L E S S O N 1 A

Your instructor may assign either Appendix A or Appendix B depending on your
environment. Appendix A is for labs using Visual C++ and Appendix B is for
labs using UNIX. If you are using an environment other than these two, your
instructor will give you instructions for this first lesson and ask you to complete
Lab 1.1 below.

LAB 1.1 Opening, Compiling and Running Your First Program

Exercise 1: Logon to your system based on your professor’s instructions.

Exercise 2: Bring in the firstprog.cpp program from the Lab 1 folder.

Exercise 3: Compile the program.

Exercise 4: Run the program and write what is printed on the screen.

The code of firstprog.cpp is as follows:

// This is the first program that just writes out a simple message

// Place your name here

#include <iostream> // needed to perform C++ I/O

using namespace std;

int main ()

{

cout << "Now is the time for all good men" << endl;

cout << "To come to the aid of their party" << endl;

return 0;

}

LAB 1.2 Compiling a Program with a Syntax Error

Exercise 1: Bring in program semiprob.cpp from the Lab 1 folder.

Exercise 2: Compile the program. Here we have our first example of the many
syntax errors that you no doubt will encounter in this course. The error
message you receive may be different depending on the system you are
using, but the compiler insists that a semicolon is missing somewhere.
Unfortunately, where the message indicates that the problem exists, and
where the problem actually occurs may be two different places. To correct

Lesson 1A 7

LM_Chp1.qxd 4/24/03 12:29 PM Page 7

the problem place a semicolon after the line cout << "Today is a great

day for Lab".
Most syntax errors are not as easy to spot and correct as this one.

Exercise 3: Re-compile the program and when you have no syntax errors, run
the program and input 9 when asked. Record the output.

Exercise 4: Try running it with different numbers. Record your output.

Do you feel you are getting valid output?

The code of semiprob.cpp is as follows:

// This program demonstrates a compile error.

// Place your name here

#include <iostream>

using namespace std;

int main()

{

int number;

float total;

cout << "Today is a great day for Lab"

cout << endl << "Let's start off by typing a number of your choice" << endl;

cin >> number;

total = number * 2;

cout << total << " is twice the number you typed" << endl;

return 0;

}

LAB 1.3 Running a Program with a Run Time Error

Exercise 1: Bring in program runprob.cpp from the Lab 1 folder.

Exercise 2: Compile the program. You should get no syntax errors.

Exercise 3: Run the program. You should now see the first of several run time
errors. There was no syntax or grammatical error in the program; however,
just like commanding someone to break a law of nature, the program is
asking the computer to break a law of math by dividing by zero. It cannot
be done. On some installations, you may see this as output that looks very
strange. Correct this program by having the code divide by 2 instead of 0.

Exercise 4: Re-compile and run the program. Type 9 when asked for input.
Record what is printed.

8 LESSON SET 1 Introduction to Programming and the Translation Process

LM_Chp1.qxd 4/24/03 12:29 PM Page 8

Exercise 5: Run the program using different values. Record the output.

Do you feel that you are getting valid output?

The code of runprob.cpp is as follows:

// This program will take a number and divide it by 2.

// Place your name here

#include <iostream>

using namespace std;

int main()

{

float number;

int divider;

divider = 0;

cout << "Hi there" << endl;

cout << "Please input a number and then hit return" << endl;

cin >> number;

number = number / divider;

cout << "Half of your number is " << number << endl;

return 0;

}

L E S S O N 1 B

LAB 1.4 Working with Logic Errors

Exercise 1: Bring in program logicprob.cpp from the Lab 1 folder. The code
follows.

// This program takes two values from the user and then swaps them

// before printing the values. The user will be prompted to enter

// both numbers.

// Place your name here

#include <iostream>

using namespace std;

Lesson 1B 9

continues

LM_Chp1.qxd 4/24/03 12:29 PM Page 9

int main()

{

float firstNumber;

float secondNumber;

// Prompt user to enter the first number.

cout << "Enter the first number" << endl;

cout << "Then hit enter" << endl;

cin >> firstNumber;

// Prompt user to enter the second number.

cout << "Enter the second number" << endl;

cout << "Then hit enter" << endl;

cin >> secondNumber;

// Echo print the input.

cout << endl << "You input the numbers as " << firstNumber

<< " and " << secondNumber << endl;

// Now we will swap the values.

firstNumber = secondNumber;

secondNumber = firstNumber;

// Output the values.

cout << "After swapping, the values of the two numbers are "

<< firstNumber << " and " << secondNumber << endl;

return 0;

}

Exercise 2: Compile this program. You should get no syntax errors.

Exercise 3: Run the program. What is printed?

Exercise 4: This program has no syntax or run time errors, but it certainly has a
logic error. This logic error may not be easy to find. Most logic errors
create a challenge for the programmer. Your instructor may ask you not to
worry about finding and correcting the problem at this time.

10 LESSON SET 1 Introduction to Programming and the Translation Process

LM_Chp1.qxd 4/24/03 12:29 PM Page 10

LAB 1.5 Writing Your First Program (Optional)

Exercise 1: Develop a design that leads to an algorithm and a program that will
read in a number that represents the number of kilometers traveled. The
output will convert this number to miles. 1 kilometer = 0.621 miles. Call
this program kilotomiles.cpp.

Exercise 2: Compile the program. If you get compile errors, try to fix them and
re-compile until your program is free of syntax errors.

Exercise 3: Run the program. Is your output what you expect from the input
you gave? If not, try to find and correct the logic error and run the pro-
gram again. Continue this process until you have a program that produces
the correct result.

Lesson 1B 11

LM_Chp1.qxd 4/24/03 12:29 PM Page 11

LM_Chp1.qxd 4/24/03 12:29 PM Page 12

L E S S O N S E T

Introduction to the C++
Programming Language

PURPOSE 1. To briefly introduce the C++ programming language

2. To show the use of memory in programming

3. To introduce variables and named constants

4. To introduce various data types:
a. Integer
b. Character
c. Floating point
d. Boolean
e. String

5. To introduce the assignment and cout statements

6. To demonstrate the use of arithmetic operators

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

3. In the lab, students should complete Labs 2.1 through 2.4 in sequence. Your
instructor will give further instructions as to grading and completion of the lab.

Approximate Check
completion Page when

Contents Prerequisites time number done

Pre-lab Reading Assignment 20 min. 14

Pre-lab Writing Assignment Pre-lab reading 10 min. 19

Lesson 2A

Lab 2.1
Working with the cout Pre-lab reading 20 min. 20
Statement

Lab 2.2
Working with Constants, Understanding of 30 min. 21
Variables, and Arithmetic variables and
Operators operators

continues

2

13

LM_Chp2.qxd 4/24/03 12:31 PM Page 13

Lesson 2B

Lab 2.3
Rectangle Area and Perimeter Understanding of 30 min. 22

basic components
of a program

Lab 2.4
Working with Characters Completion of 30 min. 22
and Strings labs 2.1–2.3

P R E - L A B R E A D I N G A S S I G N M E N T

The C++ Programming Language

Computer programming courses generally concentrate on program design that can
be applied to any number of programming languages on the market. It is imper-
ative, however, to apply that design to a particular language. This course uses C++,
a popular object-oriented language, for that purpose.

For now, we can think of a C++ program as consisting of two general divi-
sions: header and main. The header, or global section, gives preliminary
instructions to the compiler. It consists of comments that describe the purpose
of the program, as well as information on which library routines will be used by
the program.

// This program prints to the screen the words:

// PI = 3.14

// Radius = 4

// Circumference = 25.12

#include <iostream>

using namespace std;

const double PI = 3.14;

int main()

{

float radius;

radius = 4.0;

cout << "PI = " << PI << endl;

cout << "Radius = " << radius << endl;

cout << "Circumference = " << 2 * PI * radius << endl;

return 0;

}

Everything in bold (everything above the int main() statement) is considered the
header or global section. Everything else is the main section.

14 LESSON SET 2 Introduction to the C++ Programming Language

LM_Chp2.qxd 4/24/03 12:31 PM Page 14

Comments are included in every program to document what a program
does and how it operates. These statements are ignored by the computer but are
most valuable to the programmers who must update or fix the program. In C++,
comments begin with // which is an indication to the compiler to ignore every-
thing from the // to the end of the line. Comments can also cross line boundaries
by beginning with /* and ending with */. Notice that the first three lines of the

also have been written as the following:

/*

PI = 3.14

Radius = 4

Circumference = 25.12
*/

by the program.

#include <iostream>

Recall from Lesson Set 1, that every program needs other modules attached so that

needed for each particular programming assignment; however, in time you will
learn this task for yourself.

Every C++ program has a main function which indicates the start of the
executable instructions. Every main must begin with a left brace { and end with
a right brace }. The statements inside those braces will be explained as we
progress through this lesson.

Memory

Memory storage is the collection of locations where instructions and data that are
used by the program are temporarily stored. Recall from Lesson Set 1 that a com-
puter only understands a sequence of 1s and 0s. These are binary digits or bits
(BInary digiTs). Eight of these brought together are called a byte, which is the
most common unit of storage. These chunks of memory can be thought of as hotel
mailboxes at the registration desk. The size of each of those boxes indicates the
type of mail that can be stored there. A very small mailbox can only hold notes
or postcards. Larger mailboxes can hold letters, while even larger ones can hold
packages. Each mailbox is identified by a number or name of an occupant. We
have identified two very important attributes of these mailboxes: the name or num-
ber, which indicates the mailbox that is being referenced, and the size, which indi-
cates what type of “data” can be placed there.

Example: postcards Jim is an indication that the mailbox called Jim can only hold
postcards, while the statement packages Mary indicates that the mailbox called
Mary can hold large packages. Memory locations in a computer are identified by
the same two attributes: data type and name.

Much of programming is getting data to and from memory locations and thus it
is imperative that the programmer tell the computer the name and data type of
each memory location that he or she intends to use. In the sample program the
statement float radius does just that. float is a data type that indicates what kind
of data can be stored and radius is the name for that particular memory location.

Pre-lab Reading Assignment 15

LM_Chp2.qxd 4/24/03 12:31 PM Page 15

This program prints to the screen the words:

The next statement, the #include statement, indicates which library will be needed

previous program all begin with // and thus are comments. Those same lines could

it may execute properly. Your instructor will generally tell you which libraries are

Variables and Constants

The ability to change or not change the data stored can be a third attribute of
these memory locations. Components of memory in which data values stored can
change during the execution of the program are called variables. These usually
should not be defined in the header or global section of the program. In our sam-
ple program, radius is defined in the main function. Components of memory in
which data values stored are initialized once and never changed during the exe-
cution of the program are called constants. They are often defined in the global
section and are preceded (in C++) by the word const. PI, in the sample program,
is an example of a named constant.

Identifiers in C++

Identifiers are used to name variables, constants and many other components of
a program. They consist exclusively of letters, digits and the underscore _ char-
acter. They cannot begin with a digit and cannot duplicate reserved words used
in C++ such as int or if. All characters in C++ are case sensitive; thus memory
locations called simple, Simple, and SIMPLE are three distinct locations. It has
become standard practice among programmers to make constants all uppercase
and variables predominantly lowercase characters.

The statement const double PI = 3.14; in our sample program is contained
in the global section. It defines a memory location called PI to be a constant
holding a double (a data type discussed shortly) value equal to 3.14 which will
not change during the execution of the program.

The statement float radius; in the sample program is contained in the
main section. It defines a variable memory location called radius that holds a float-
ing point data type (type discussed shortly) which can be changed during the exe-
cution of the program.

Both of these statements are called definitions. They reserve by name
enough memory to hold the data type specified.

Variables, like constants, can be given an initial value when they are defined,
but that value is not permanent and can be altered. For example:

int count = 7;

Data Types

As noted earlier, computer memory is composed of locations identified by a data
type and a name (like the room number of a hotel mailbox). The data type indi-
cates what kind of data can be stored, thus setting the size of that location.

Integer Data Type

Integers are real numbers that do not contain any fractional component. They take
up less memory than numbers with fractional components. C++ has three data
types that are integers: short, int and long. The difference is strictly in the
amount of memory (bytes) they reserve: short reserving the least and long
reserving the most. Larger integers may need the long data type.

16 LESSON SET 2 Introduction to the C++ Programming Language

LM_Chp2.qxd 4/24/03 12:31 PM Page 16

// Defines a variable memory location called count that

// initially has the value of 7

count = count + 1; // count is now altered

The following three statements define integer variables in C++:

short count;

int sum;

long total;

Floating Point Data Type

In computer science 3 = 3.0 is not a true statement. The number on the left is an
integer and the number on the right is a real, or floating point, number (a number
that has a fractional component). Although mathematically the two are equal, the
computer stores them as different data types. C++ uses both float and double
to indicate floating point numbers, with double using more memory than float.

The following two statements define floating point variables in C++.

float average;

double nationaldebt;

Character Data Type

Character data includes the letters of the alphabet (upper and lower cases), the
digits 0–9 and special characters such as ! ? . , *. All these symbols combined are
called alphanumeric. Each character data is enclosed with single quotes to dis-
tinguish it from other data types. Thus '8' is different than 8. The first is a char-
acter while the second is an integer. The following statement defines a C++
character variable initialized to 'a'.
char letter = 'a';

Boolean Data Type

The Boolean data type, named after the mathematician George Boole, allows only
two values: true or false, which are internally represented as 0 and non-zero,
respectively. The following statement defines a Boolean variable initialized to false.
bool found = false;

String Type: A variable defined to be character data can store only one charac-
ter in its memory location, which is not very useful for storing names. The string
class has become part of standard C++ and, although not a primitive type defined
by the language, it can be used as a type for storing several characters in a mem-
ory location. We must “include” the string library (#include <string>) in the pro-
gram header. The following statement defines a string initialized to “Daniel”:
string name = "Daniel"; Note that a string is enclosed in double (not single)
quotes. Thus the string "a" is not the same as the character 'a'.

Assignment Operator

The = symbol in C++ is called the assignment operator and is read “is assigned
the value of.” It assigns the variable on its left the value on its right. Although
this symbol looks like an equal sign, do not confuse it with equality. The left hand
side must always be a variable. For example, count = 8; is a legitimate statement
in C++, however 8 = count; generates a syntax error.

Fundamental Instructions

Most programming languages, including C++, consist of five fundamental instruc-
tions from which all code can be generated.

Pre-lab Reading Assignment 17

LM_Chp2.qxd 4/24/03 12:31 PM Page 17

1. Assignment Statements: These statements place values in memory
locations. The left side of an assignment statement consists of one and
only one variable. The right side consists of an expression. An expression
can be any manipulation of literal numbers (actual numbers such as 7 or
38, etc.), or the contents of constants and/or variables, that will “boil
down” to one value. That value is placed in the memory location of the
variable on the left. C++ uses = as the separator between the left and right
side of the assignment statement. Those new to programming often get
this confused with equality; however = in C++ is not equality but rather
the symbol to indicate assignment. The = in C++ is read as “is assigned the
value of”.

Example:

int count;

int total;

total = 10; // 10 is a literal that is placed in the memory

// location called total

count = 3 + 4; // The right hand side of the statement is evaluated to

// 7. count is assigned the value of 7.

total = total + count; // The right hand side is evaluated 10 + 7,

// and 17 is placed in the memory location called

// total.

This last statement may seem a bit confusing. Starting with the right side, it
says to get the value that is in total (10 in this case), add it to the value
that is in count (7 in this case), and then store that combined sum (17) in
the memory location called total. Notice that total, which was initially
10, gets changed to 17.

2. Output Statements: These instructions send information from the computer
to the outside world. This information may be sent to the screen or to some
file. In C++ the cout << statement sends information to the screen. The
#include <iostream> directive must be in the header for cout to be used.

cout << total;

The above statement sends whatever value is stored in the variable total
to the screen. C++ uses the semicolon as a statement terminator.

We can output literal strings (such as “Hello”) by inclosing them in
double quotes.

The << operator acts as a separator for multiple outputs.

cout << "The value of total is " << total << endl;

The endl statement causes the cursor to be moved to the beginning of the
next line.

The remaining three fundamental instructions will be explained in
future labs.

18 LESSON SET 2 Introduction to the C++ Programming Language

LM_Chp2.qxd 4/24/03 12:31 PM Page 18

3. Input Statements: These statements bring in data to the computer.
(Lesson Set 3)

4. Conditional Statements: These instructions test conditions to determine
which path of instructions to execute. (Lesson Set 4)

5. Loops: These instructions indicate a repetition of a series of instructions.
(Lesson Set 5)

Arithmetic Operators

Programming has the traditional arithmetic operators:

Operation C++ Symbol

addition +
subtraction -
multiplication *
division /
modulus %

Integer division occurs when both the numerator and denominator of a divide
operation are integers (or numbers stored in variables defined to be integers). The
result is always an integer because the decimal part is truncated or “chopped” from
the number. Thus 9/2 will give the answer 4 not 4.5! For this reason there are two
division operations for integer numbers. The modulus operator, (%) used only with
integers, gives the remainder of a division operation. 9/2 gives 4 while 9 % 2 gives
1 (the remainder of the division).

Example:
int count = 9;

int div = 2;

int remainder;

int quotient;

quotient = count / div; // quotient is assigned a 4

remainder = count % div; // remainder is assigned a 1

You should go back and review the sample program on the first page of the Pre-
lab Reading Assignment. By now you should understand most of the statements.

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. A is a memory location whose value cannot change
during the execution of the program.

2. is a data type that only holds numbers with no fractional
component.

3. is a data type that holds numbers with fractional
components.

4.
division problem.

Pre-lab Writing Assignment 19

LM_Chp2.qxd 4/24/03 12:31 PM Page 19

is an arithmetic operator that gives the remainder of a

5. cout << is an example of the fundamental instruction.

6. data types only have two values: true and false.

7. One byte consists of bits.

8. // or /* in C++ indicates the start of a .

9. A is a memory location whose value can change during
the execution of the program.

10. A can hold a sequence of characters such as a name.

L E S S O N 2 A

LAB 2.1 Working with the cout Statement

Exercise 1: Retrieve program name.cpp from the Lab 2 folder.
Fill in the code so that the program will do the following:

Write your first and last name on one line.
Write your address on the next line (recall the function of the endl statement).
Write your city, state and zip on the next line.
Write your telephone number on the next line.
Remember that to output a literal, such as “Hello”, you must use quotes.
Compile and run the program.

Example: Deano Beano
123 Markadella Lane
Fruitland, Md. 55503
489-555-5555

The code for name.cpp is as follows:

// This program will write the name, address and telephone

// number of the programmer.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

// Fill in this space to write your first and last name

// Fill in this space to write your address (on new line)

// Fill in this space to write you city, state and zip (on new line)

// Fill in this space to write your telephone number (on new line)

return 0;

}

20 LESSON SET 2 Introduction to the C++ Programming Language

LM_Chp2.qxd 4/24/03 12:31 PM Page 20

Exercise 2: Change the program so that three blank lines separate the tele-
phone number from the address. Compile and run the program.

Exercise 3: Change the program so that the following (but with your name and
address) is printed. Try to get the spacing just like the example. Compile
and run the program.

Programmer: Deano Beano

123 Markadella Lane
Fruitland, Md. 55503

Telephone: 489-555-5555

LAB 2.2 Working with Constants, Variables and Arithmetic Operators

Exercise 1: Bring in the file circlearea.cpp from the Lab 2 folder.

The code of circlearea.cpp is as follows:

// This program will output the circumference and area

// of the circle with a given radius.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

const double PI = 3.14;

const double RADIUS = 5.4;

int main()

{

area // definition of area of circle

float circumference; // definition of circumference

circumference = 2 * PI * RADIUS; // computes circumference

area = ; // computes area

// Fill in the code for the cout statement that will output (with description)

// the circumference

// Fill in the code for the cout statement that will output (with description)

// the area of the circle

return 0;

}

Lesson 2A 21

LM_Chp2.qxd 4/24/03 12:31 PM Page 21

Exercise 2: Fill in the blanks and the cout statements so that the output will
produce the following:

The circumference of the circle is 33.912
The area of the circle is 91.5624

Exercise 3: Change the data type of circumference from float to int. Run the
program and record the results.

The circumference of the circle is .

The area of the circle is .

Explain what happened to get the above results.

L E S S O N 2 B

LAB 2.3 Rectangle Area and Perimeter

Exercise 1: Using Lab 2.2 as an example, develop a program that will deter-
mine the area and perimeter of a rectangle. The length and width can be
given as constants. (LENGTH=8 WIDTH=3)

Exercise 2: Compile and run your program. Continue to work on it until you
get the following output.

The area of the rectangle is 24
The perimeter of the rectangle is 22

LAB 2.4 Working with Characters and Strings

Exercise 1: Retrieve program stringchar.cpp from the Lab 2 folder. This
program illustrates the use of characters and strings. The char data type
allows only one character to be stored in its memory location. The string
data type (actually a class and not a true data type built into the language)
allows a sequence of characters to be stored in one memory location. The
code follows:

// This program demonstrates the use of characters and strings

// PLACE YOUR NAME HERE

#include <iostream>

#include <string>

using namespace std;

// Definition of constants

const string FAVORITESODA = "Dr. Dolittle"; // use double quotes for strings

const char BESTRATING = 'A'; // use single quotes for characters

int main()

{

22 LESSON SET 2 Introduction to the C++ Programming Language

LM_Chp2.qxd 4/24/03 12:31 PM Page 22

char rating; // 2nd highest product rating

string favoriteSnack; // most preferred snack

int numberOfPeople; // the number of people in the survey

int topChoiceTotal; // the number of people who prefer the top choice

// Fill in the code to do the following:

// Assign the value of "crackers" to favoriteSnack

// Assign a grade of 'B' to rating

// Assign the number 250 to the numberOfPeople

// Assign the number 148 to the topChoiceTotal

// Fill in the blanks of the following:

cout << "The preferred soda is " << << endl;

cout << "The preferred snack is " << << endl;

cout << "Out of " << << " people "

<< << " chose these items!" << endl;

cout << "Each of these products were given a rating of " << ;

cout << " from our expert tasters" << endl;

cout << "The other products were rated no higher than a " << rating

<< endl;

return 0;

}

Exercise 2: Fill in the indicated code, then compile and run the program.
Continue to work on the program until you have no syntax, run-time, or

Is it possible to change the choice of FAVORITESODA by adding
code within the main module of the program? Why or why not?

Exercise 4: Is it possible to change the choice of favoriteSnack by adding code
within the program? Why or why not?

Lesson 2B 23

LM_Chp2.qxd 4/24/03 12:31 PM Page 23

Exercise 3:

logic errors.

The output should look similar to the following:
The preferred soda is Dr. Dolittle
The preferred snack is crackers
Out of 250 people 148 chose these items!
Each of these products were given a rating of A from our expert tasters

The other products were rated no higher than a B

LM_Chp2.qxd 4/24/03 12:31 PM Page 24

L E S S O N S E T

Expressions, Input, Output and
Data Type Conversions

PURPOSE 1. To learn input and formatted output statements

2. To learn data type conversions (coercion and casting)

3. To work with constants and mathematical functions

4. To briefly introduce the concept of files

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment 20 min. 26

Pre-lab Writing Assignment Pre-lab reading 10 min. 32

LESSON 3A

Lab 3.1
Working with the cin Confidence in 15 min. 33
Statement use of data types

Lab 3.2
Formatting Output Basic understanding 15 min. 35

of cout and
formatted output

Lab 3.3
Arithmetic Operations and Understanding of 20 min. 36
Math Functions pre-defined functions

pow and sqrt

LESSON 3B

Lab 3.4
Working with Type Casting Understanding of 20 min. 37

type casting (implicit
and explicit data
conversion)

continues

3

25

LM_Chp3.qxd 4/24/03 12:34 PM Page 25

Lab 3.5
Reading and Writing Basic understanding 15 min. 38
to a File of reading and writing files

Lab 3.6
Student Generated Code Understanding of all 30 min. 39
Assignments concepts (except files)

covered in this section.

P R E - L A B R E A D I N G A S S I G N M E N T

Review of the cout Statement

The cout statement invokes an output stream, which is a sequence of characters
to be displayed to the screen.

Example: cout << "Hi there";

The insertion operator << inserts the string of characters Hi there into the
output stream that goes to the screen. The cout statement can be thought of as
an ostream (output stream) data type.

Input Instructions

Example: cin >> grade;

The extraction operator >> extracts an item from the input stream. In this case,
since grade is an integer, this instruction will wait for an integer to be entered at
the keyboard and then will place that number in the memory location called
grade.

Just as cout is of type ostream, cin is considered to be an istream (input
stream) data type. In order to use cin and cout in a C++ program, the #include

<iostream> directive should be included in the header. The >> extraction oper-
ator also serves as a separator between input variables, allowing more than one
memory location to be loaded with a single cin instruction. The values read
must be the same data type as their corresponding variables, although a floating
point variable could receive an integer since the conversion will be made auto-
matically. Conversion is discussed later in this lesson.

Example: float rate;

float hours;

cin >> rate >> hours;

The cin statement will wait for two floating point numbers (separated by at least
one blank space) to be input from the keyboard. The first will be stored in rate
and the second in hours.

26 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

LM_Chp3.qxd 4/24/03 12:34 PM Page 26

world, the cin statement transfers data into the computer from the keyboard.
Just as the cout statement transfers data from the computer to the “outside”

There is one problem with the example above; it does not indicate to the user
for what data the cin statement is waiting. Remember that the cin statement is
expecting data from the user at the keyboard. For this reason, every cin statement
should be preceded by a cout statement that indicates to the user the data to be
input. Such a cout statement is called a prompt.

Example:
float rate, hours;

// More than one variable can be defined

// in a statement. Multiple variables are

// separated by a comma.

float grosspay;

cout << "Please input the pay rate per hour"

<< " and then the number of hours worked" << endl;

cin >> rate >> hours;

grosspay = rate * hours; // finds the grosspay

cout << endl << "The rate is = " << rate << endl;

cout << "The number of hours = " << hours << endl;

cout << "The gross pay = " << grosspay << endl;

When cin is reading numeric data, whitespace (blank spaces or unseen control
characters) preceding the number are ignored and the read continues until a
non-numeric character is encountered.

Strings

It is often useful to store a string, such as a name, in a variable. Since the char
data type holds only a single character, we must define a variable that is able to hold
a whole sequence of characters. One way to do this is through an array of char-
acters, often referred to as a C-string in C++. When using this method to define a
string, the programmer must indicate how many characters it can hold. The last char-
acter must be reserved for the end-of-string character ‘\0’ which marks the end
of the string. In Example 2 below, the variable name can hold up to 11 characters
even though the size of the array indicates 12. The extra character is reserved for
the end-of-string marker. Arrays of characters are discussed in a later chapter. For
now we can define a variable to be a string object: Example 1 below.

Example 1 (using a string object) Example 2 (using a C-string)
string name; char name[12]

cout << "What is your name"; cout << "What is your name";

cin >> name; cin >> name;

cout << "Hi " << name << endl; cout << "Hi " << name << endl;

Although Example 1 will work, we often do not use cin >> to read in strings.
This is because of the way it handles whitespace (blank spaces, tabs, line breaks,
etc.). When cin >> is reading numeric data, leading whitespace is ignored and the
read continues until a non-numeric character is encountered. As one might expect,
cin >> is a logical choice for reading numeric data. However, when cin >> is read-
ing into a variable defined as a string, it skips leading whitespaces but stops if a
blank space is encountered within the string. Names that have a space in it such

Pre-lab Reading Assignment 27

LM_Chp3.qxd 4/24/03 12:34 PM Page 27

as Mary Lou, would not be read into one variable using cin >>. We can get
around this restriction by using special functions for reading whole lines of input.
The getline function allows us to input characters into a string object. In Example
1 above we could read a name like Mary Lou into the name variable with the
statement

getline(cin, name);

The first word in the parentheses is an indication of “where” the data is
coming from. In this case it is coming from the keyboard so we use cin. Data
could come from other sources such as files (discussed later in this chapter) in
which case the name of the file would be used instead of cin. The second
word in parentheses is the name of the variable that will “receive” the string
(name in this case).

When using C-strings, we can read whole lines of input using cin.getline
(string_name, length), where length specifies the number of characters the C-
string can hold. In Example 2 above, we could read a name like Mary Lou into
the name variable with the statement

cin.getline(name,12);

This allows a maximum of 11 characters to be read in and stored in name,
reserving a space for the ‘\0’ end-of-string character.

Summary of storing and inputting strings
cin >> name; Skips leading whitespaces

Stops at the first trailing whitespace which is not
consumed (ie. the whitespace is not placed in
name)

cin.getline(name,12); Does not skip leading whitespaces
Stops when either 11 characters are read or when
an end-of-line ‘\n’ character is encountered (which
is not consumed)

Formatted Output

C++ has special instructions that allow the user to control output attributes such
as spacing, decimal point precision, data formatting and other features.

Example:
cout << fixed // This displays the output in decimal

// format rather than scientific notation.

cout << showpoint; // This forces all floating-point output to

// show a decimal point, even if the values

// are whole numbers

cout << setprecision(2); // This rounds all floating-point numbers

// to 2 decimal places

28 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

LM_Chp3.qxd 4/24/03 12:34 PM Page 28

The order in which these stream manipulators appear does not matter. In fact,
the above statements could have been written as one instruction:

cout << setprecision(2) << fixed << showpoint;

Spacing is handled by an indication of the width of the field that the number, char-
acter, or string is to be placed. It can be done with the cout.width(n); where
n is the width size. However it is more commonly done by the setw(n) within
a cout statement. The #include <iomanip> directive must be included in the
header (global section) for features such as setprecision() and setw().

Example: float price = 9.5;

float rate = 8.76;

cout << setw(10) << price << setw(7) << rate;

The above statements will print the following:

9.5 8.76

There are seven blank spaces before 9.5 and three blank spaces between the num-
bers. The numbers are right justified. The computer memory stores this as follows:

Note: So far we have used endl for a new line of output. '\n' is an escape
sequence which can be used as a character in a string to accomplish the same
thing.

Example: Both of the following will do the same thing.

cout << "Hi there\n"; cout << "Hi there" << endl;

Expressions

Recall from Lesson Set 2 that the assignment statement consists of two parts: a vari-
able on the left and an expression on the right. The expression is converted to
one value that is placed in the memory location corresponding to the variable on
the left. These expressions can consist of variables, constants and literals combined
with various operators. It is important to remember the mathematical precedence
rules which are applied when solving these expressions.

Precedence Rules of Arithmetic Operators

1. Anything grouped in parentheses is top priority

2. Unary negation (example: –8)

3. Multiplication, Division and Modulus * / %

4. Addition and Subtraction + –

Example: (8 * 4/2 + 9 - 4/2 + 6 * (4+3))

(8 * 4/2 + 9 - 4/2 + 6 * 7)

(32 /2 + 9 - 4/2 + 6 * 7)

(16 + 9 - 4/2 + 6 * 7)

(16 + 9 - 2 + 6 * 7)

(16 + 9 - 2 + 42)

(25 - 2 + 42)

(23 + 42) = 65

Pre-lab Reading Assignment 29

9 . 5 . 7 68

LM_Chp3.qxd 4/24/03 12:34 PM Page 29

Converting Algebraic Expressions to C++

One of the challenges of learning a new computer language is the task of chang-
ing algebraic expressions to their equivalent computer instructions.

Example: 4y(3-2)y+7

How would this algebraic expression be implemented in C++?

4 * y * (3-2) * y + 7

Other expressions are a bit more challenging. Consider the quadratic formula:

–b ± b2 – 4ac
2a

We need to know how C++ handles functions such as the square root and squar-
ing functions.

There are several predefined math library routines that are contained in the
cmath library. In order to use these we must have the #include <cmath> direc-
tive in the header.

Exponents in C++ are handled by the pow(number,exp) function, where num-
ber indicates the base and exp is the exponent. For example,

23 would be written as pow(2,3)

59 would be written as pow(5,9)

Square roots are handled by sqrt(n). For example,

9 would be written as sqrt(9)

Look at the following C++ statements and try to determine what they are doing.

formula1 = (-b + sqrt(pow(b,2) -(4 * a * c))) / (2 * a);

formula2 = (-b - sqrt(pow(b,2) -(4 * a * c))) / (2 * a);

(These are the roots from the quadratic formula in C++ format.)

Data Type Conversions

Recall the discussion of data types from Lesson Set 2. Whenever an integer and
a floating point variable or constant are mixed in an operation, the integer is
changed temporarily to its equivalent floating point. This automatic conversion
is called implicit type coercion.

Consider the following:

int count;

count = 7.8;

We are trying to put a floating point number into an integer memory location. This
is like trying to stuff a package into a mailbox that is only large enough to con-
tain letters. Something has to give. In C++ the floating point is truncated (the entire
fractional component is cut off) and, thus, we have loss of information.

30 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

LM_Chp3.qxd 4/24/03 12:34 PM Page 30

Type conversions can be made explicit (by the programmer) by using the
following general format: static_cast<DataType>(Value). This is called type cast-
ing or type conversion.

Example:
int count;

float sum;

count = 10.89; // Float to integer This is Type coercion

// 10 is stored in count

// Also float to integer; however this is

// type casting

If two integers are divided, the result is an integer that is truncated. This can
create unexpected results.

Example: int num_As = 10;

int totalgrade = 50;

float percent_As;

percent_As = num_As / totalgrade;

In this problem we would expect percent_As to be .20 since 10/50 is .20. However
since both num_As and totalgrade are integers, the result is integer division
which gives a truncated number. In this case it is 0. Whenever a smaller integer
value is divided by a larger integer value the result will always be 0. We can
correct this problem by type casting.

Although the variable num_As itself remains an integer, the type cast causes the
divide operation to use a copy of the num_As value which has been converted to
a float. A float is thus being divided by the integer totalGrade and the result
(through type coercion) will be a floating-point number.

Files

So far all our input has come from the keyboard and our output has gone to the
monitor. Input, however, can come from files and output can go to files. To do
either of these things we should add the #include <fstream> directive in the head-
er to allow files to be created and accessed. A file containing data to be input to
the computer should be defined as an ifstream data type and an output file
should be defined as ofstream.

Sample Program 3.1

Suppose we have a data file called grades.dat that contains three grades, and
we want to take those grades and output them to a file that we will call final-
grade.out. The following code shows how this can be done in C++.

#include <fstream> // This statement is needed to use files

using namespace std;

int main()

{

float grade1, grade2, grade3; // This defines 3 float variables

Pre-lab Reading Assignment 31

continues

LM_Chp3.qxd 4/24/03 12:34 PM Page 31

count = static_cast<int>(10.89);

percent_As = static_cast<float>(num_As)/totalgrade;

ifstream dataFile; // This defines an input file stream.

// dataFile is the "internal" name that is

// used in the program for accessing the

// data file.

ofstream outFile; // This defines an output file stream.

// outFile is the "internal" name that is

// used in the program for accessing the

// output file.

outFile << fixed << showpoint; // These can be used with output files as

// well as with cout.

dataFile.open("grades.dat"); // This ties the internal name, dataFile,

// to the actual file, grades.dat.

outFile.open("finalgrade.out"); // This ties the internal name, outFile, to

// the actual file, finalgrade.out.

dataFile >> grade1 >> grade2 // This reads the values from the input file

>> grade3; // into the 3 variables.

outFile << grade1 << endl; // These 3 lines write the values stored in

outFile << grade2 << endl; // the 3 variables to the output file

outFile << grade3 << endl;

return 0;

}

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions
1. What is the final value (in C++) of the following expression?

(5 - 16 / 2 * 3 + (3 + 2 / 2) - 5)

2. How would the following expression be written in C++?

2x + 34

3. Implicit conversion is also known as data type .

4. Explicit type conversion is also known as type .

5. List the preprocessor directive that must be included for cin and cout to
be used in a C++ program.

6. List the preprocessor directive that is used to allow data and output files to
be used in the program.

7. Blank spaces or unseen control characters in a data file are referred to as
.

8. The << in a cout statement is called the operator.

9. The #include< > is needed for formatted output.

10. The '\n' is a special character that .

32 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

LM_Chp3.qxd 4/24/03 12:34 PM Page 32

L E S S O N 3 A

LAB 3.1 Working with the cin Statement

Bring in the program bill.cpp from the Lab 3 folder. The code is listed below:

// This program will read in the quantity of a particular item and its price.

// It will then print out the total price.

// The input will come from the keyboard and the output will go to

// the screen.

// PLACE YOUR NAME HERE

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

int quantity; // contains the amount of items purchased

float itemPrice; // contains the price of each item

float totalBill; // contains the total bill.

cout << setprecision(2) << fixed << showpoint; // formatted output

cout << "Please input the number of items bought" << endl;

// Fill in the input statement to bring in the quantity.

// Fill in the prompt to ask for the price.

// Fill in the input statement to bring in the price of each item.

// Fill in the assignment statement to determine the total bill.

// Fill in the output statement to print total bill,

// with a label to the screen.

return 0;

}

Exercise 1: Complete the program so that a sample run inputting 22 for the
number of items bought and 10.98 for the price of each item will produce
the results below.

Sample run of the program.

Please input the number of items bought
22

Lesson 3A 33

LM_Chp3.qxd 4/24/03 12:34 PM Page 33

Please input the price of each item
10.98

The total bill is $241.56

Exercise 2: Once you have the program working, change the instruction:

cout << setprecision (2) << fixed << showpoint;

to

cout << setprecision(2) << showpoint;

Rerun the program with the same data given in Exercise 1 above and record
your results. What do you think the fixed attribute in the cout statement
does?

Exercise 3: Now put the fixed attribute back in and change the instruction to
make the precision 4. Rerun the program with the same data given in
Exercise 1 and record your results. What do you think the setprecision()

attribute in the cout statement does?

The attribute showpoint forces all floating point output to show a decimal
point even if the values are whole numbers. In some environments this is
done automatically.

Exercise 4: Add the following directive to the program: #include <string>
in the header. Alter the program so that the program first asks for
the name of the product (which can be read into a string object)
so that the following sample run of the program will appear.

Please input the name of the item
Milk
Please input the number of items bought
4

Please input the price of each item
1.97

The item that you bought is Milk
The total bill is $7.88

Now altar the program, if you have not already done so, so that
the name of an item could include a space within its string.

Please input the name of the item
Chocolate Ice Cream

Please input the number of items bought
4

Please input the price of each item
1.97

The item that you bought is Chocolate Ice Cream
The total bill is $7.88

34 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

(optional)

LM_Chp3.qxd 4/24/03 12:34 PM Page 34

LAB 3.2 Formatting Output

Look at the following table:

PRICE QUANTITY

1.95 8
10.89 9

Assume that from the left margin, the price takes up fifteen spaces. We could say
that the numbers are right justified in a 15-width space. Starting where the price
ends, the next field (quantity) takes up twelve spaces. We can use the formatted
output from Lab 3.1 and the statement setw(n) where n is some integer to indi-
cate the width to produce such tables.

Bring in the program tabledata.cpp from the Lab 3 folder. The code is as follows:

// This program will bring in two prices and two quantities of items

// from the keyboard and print those numbers in a formatted chart.

//PLACE YOUR NAME HERE

#include <iostream>

#include // Fill in the code to bring in the library for

// formatted output.

using namespace std;

int main()

{

float price1, price2; // The price of 2 items

int quantity1, quantity2; // The quantity of 2 items

cout << setprecision(2) << fixed << showpoint;

cout << "Please input the price and quantity of the first item" << endl;

// Fill in the input statement that reads in price1 and

// quantity1 from the keyboard.

// Fill in the prompt for the second price and quantity.

// Fill in the input statement that reads in price2 and

// quantity2 from the keyboard.

cout << setw(15) << "PRICE" << setw(12) << "QUANTITY\n\n";

// Fill in the output statement that prints the first price

// and quantity. Be sure to use setw() statements.

// Fill in the output statement that prints the second price

// and quantity.

return 0;

}

Lesson 3A 35

LM_Chp3.qxd 4/24/03 12:34 PM Page 35

Exercise 1: Finish the code above by filling in the blanks and the instructions
necessary to execute the following sample run. Note that two or more data
items can be input at one time by having at least one blank space between
them before hitting the enter key.

Please input the price and quantity of the first item
1.95 8

Please input the price and quantity of the second item
10.89 9

PRICE QUANTITY

1.95 8
10.89 9

LAB 3.3 Arithmetic Operations and Math Functions

Bring in the program righttrig.cpp from the Lab 3 folder. The code is as follows:

// This program will input the value of two sides of a right triangle and then

// determine the size of the hypotenuse.

// PLACE YOUR NAME HERE

#include <iostream>

#include <cmath> // needed for math functions like sqrt()

using namespace std;

int main()

{

float a,b; // the smaller two sides of the triangle

float hyp; // the hypotenuse calculated by the program

cout << "Please input the value of the two sides" << endl;

cin >> a >> b;

// Fill in the assignment statement that determines the hypotenuse

cout << "The sides of the right triangle are " << a << " and " << b << endl;

cout << "The hypotenuse is " << hyp << endl;

return 0;

}

The formula for finding the hypotenuse is hyp = a2 + b2.

36 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

LM_Chp3.qxd 4/24/03 12:34 PM Page 36

How can this be implemented in C++? Hint: You will use two pre-defined
math functions (one of them twice) learned in this lesson. One of them
will be “inside” the other.

Exercise 1: Fill in the missing statement so that the following sample run is
implemented:

Please input the value of the two sides
9 3
The sides of the right triangle are 9 and 3
The hypotenuse is 9.48683

Exercise 2: Alter the program so that the sample run now looks like the
following:

Please input the value of the two sides
9 3
The sides of the right triangle are 9 and 3
The hypotenuse is 9.49

Note: This is not a trivial change. You must include another directive as
well as use the formatted features discussed in the earlier labs of this
lesson. Notice that the change is made only to the value of the hypotenuse
and not to the values of 9 and 3.

L E S S O N 3 B

LAB 3.4 Working with Type Casting

Bring in the program batavg.cpp from the Lab 3 folder. The code follows.

// This program will determine the batting average of a player.

// The number of hits and at bats are set internally in the program.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

const int AT_BAT = 421;

const int HITS = 123;

int main()

{

int batAvg;

batAvg = HITS / AT_BAT // an assignment statement

cout << "The batting average is " << batAvg << endl; // output the result

return 0;

}

Lesson 3B 37

LM_Chp3.qxd 4/24/03 12:34 PM Page 37

Exercise 1: Run this program and record the results. The batting average
is .

Exercise 2: There is a logic error in this program centering around data types.
Does changing the data type of batavg from int to float solve the prob-
lem? Make that change and run the program again and record the result.

The batting average is .

Exercise 3: Continue to work with this program until you get the correct result.
The correct result should be 0.292162. Do not change the data type of
the two named constants. Instead, use a typecast to solve the problem.

LAB 3.5 Reading and Writing to a File

Bring in billfile.cpp from the Lab 3 folder. The code is as follows:

// This program will read in the quantity of a particular item and its price.

// It will then print out the total price.

// The input will come from a data file and the output will go to

// an output file.

// PLACE YOUR NAME HERE

#include <fstream>

#include <iomanip>

using namespace std;

int main()

{

ifstream dataIn; // defines an input stream for a data file

ofstream dataOut; // defines an output stream for an output file

int quantity; // contains the amount of items purchased

float itemPrice; // contains the price of each item

float totalBill; // contains the total bill, i.e. the price of all items

dataIn.open("transaction.dat"); // This opens the file.

dataOut.open("bill.out");

// Fill in the appropriate code in the blank below

<< setprecision(2) << fixed << showpoint; // formatted output

// Fill in the input statement that brings in the

// quantity and price of the item

// Fill in the assignment statement that determines the total bill.

// Fill in the output statement that prints the total bill, with a label,

// to an output file

return 0;

}

38 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

LM_Chp3.qxd 4/24/03 12:34 PM Page 38

Exercise 1: Notice that this is an altered version of Lab 3.1. This program gets
the information from a file and places the output to a file. You must
create the data file. Your instructor will tell you how to create the data file
and where to put it. Create a data file called transaction.dat that has the
following information:

22

10.98

Exercise 2: Fill in the blank and the statements that will read the data from the
file and print the following to bill.out:

The total bill is $241.56

LAB 3.6 Student Generated Code Assignments

Option 1: Write a program that will read in 3 grades from the keyboard and
will print the average (to 2 decimal places) of those grades to the screen. It
should include good prompts and labeled output. Use the examples from
the earlier labs to help you. You will want to begin with a design. The
Lesson Set 1 Pre-lab Reading Assignment gave an introduction for a design
similar to this problem. Notice in the sample run that the answer is stored
in fixed point notation with two decimal points of precision.

Sample run:

Please input the first grade
97

Please input the second grade
98.3

Please input the third grade
95

The average of the three grades is 96.77

Option 2: The Woody furniture company sells the following three styles of chairs:

Style Price Per Chair
American Colonial $ 85.00
Modern $ 57.50
French Classical $127.75

Write a program that will input the amount of chairs sold for each style. It
will print the total dollar sales of each style as well as the total sales of all
chairs in fixed point notation with two decimal places.

Sample run:

Please input the number of American Colonial chairs sold
20
Please input the number of Modern chairs sold
15
Please input the number of French Classical chairs sold
5

Lesson 3B 39

LM_Chp3.qxd 4/24/03 12:34 PM Page 39

The total sales of American Colonial chairs $1700.00
The total sales of Modern chairs $862.50
The total sales of French Classical chairs $638.75
The total sales of all chairs $3201.25

Option 3: Write a program that will input total sales (sales plus tax) that a
business generates for a particular month. The program will also input the
state and local sales tax percentage. It will output the total sales plus the
state tax and local tax to be paid. The output should be in fixed notation
with 2 decimal places.

Sample run:

Please input the total sales for the month
1080
Please input the state tax percentage in decimal form (.02 for 2%)
.06
Please input the local tax percentage in decimal form (.02 for 2%)
.02

40 LESSON SET 3 Expressions, Input, Output and Data Type Conversions

LM_Chp3.qxd 4/24/03 12:34 PM Page 40

The total sales for the month is $1080.00
The state tax for the month is $64.80
The local tax for the month is $21.60

L E S S O N S E T

Conditional Statements

PURPOSE 1. To work with relational operators

2. To work with conditional statements

3. To learn and use nested if statements

4. To learn and use logical operators

5. To learn and use the switch statement

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment 20 min. 42

Pre-lab Writing Assignment Pre-lab reading 10 min. 48

LESSON 4A

Lab 4.1
Relational Operators Basic understanding of 15 min. 48
and the if Statement relational operators and

the simple if statement

Lab 4.2
if/else and Nested if Basic understanding 20 min. 49
Statements of nested if statements

Lab 4.3
Logical Operators Basic understanding 15 min. 50

of logical operators

LESSON 4B

Lab 4.4
The switch Statement Understanding of the 25 min. 51

switch statement

Lab 4.5
Student Generated Code Basic understanding of 30 min. 52
Assignments conditional statements

4

41

LM_Chp4.qxd 4/24/03 12:35 PM Page 41

P R E - L A B R E A D I N G A S S I G N M E N T

Relational Operators

You have already seen that the statement total = 5 is an assignment statement;
that is, the integer 5 is placed in the variable called total. Nothing relevant to our
everyday understanding of equality is present here. So how do we deal with
equality in a program? How about greater than or less than? C++ allows the pro-
grammer to compare numeric values using relational operators. They are the
following:

> Greater than
< Less than
> = Greater than or equal to
< = Less than or equal to
= = Equal to
! = Not equal to

An expression of the form num1 > num2 is called a relational expression. Note
that it does not assert that num1 is greater than num2. It actually tests to see if this
is true. So relational expressions are boolean. Their value must be either true or

Consider the following code:

int years;

years = 6; // assignment statement years is assigned the value of 6

years == 5; // relational expression, not an assignment statement

years = years - 1; // assignment statement

years == 5; // relational expression

In this sequence the first occurrence of years == 5 is a false statement whereas
the second occurrence is true. Can you see why?

The if Statement

Sometimes we may only want a portion of code executed under certain condi-
tions. To do so, we use conditional statements. For example, if you are writ-
ing a payroll program to compute wages, then the program should only compute
overtime pay if the employee worked more than 40 hours in a given week.
Otherwise, when the program is executed the overtime portion of the code
should be bypassed. An if statement is one kind of conditional statement.

Consider the following program:

Sample Program 4.1:

// This program prints "You Pass" if a student's average is 60 or higher and prints

// "You Fail" otherwise

#include <iostream>

using namespace std:

int main()

{

float average;

42 LESSON SET 4 Conditional Statements

LM_Chp4.qxd 4/24/03 12:35 PM Page 42

false. The statement cost!=9 is false if cost has value 9 and true otherwise.

cout << "Input your average" << endl;

cin >> average;

if (average >= 60) // note the use of a relational operator

cout << "You Pass" << endl;

if (average < 60)

cout << "You Fail" << endl;

return 0;

}

Note that it is not possible for this program to print out both “You Pass” and
“You Fail”. Only one of the if statements will be executed. Later we will see a
way to write this program without using 2 if statements.

If you want to conditionally execute several statements using if, the fol-
lowing syntax is required:

if (expression)

{

statement_1;

statement_2;

:

statement_n;

}

Note the curly braces surrounding the set of statements to be conditionally executed.

The if/else Statement

In Sample Program 4.1 we used two if statements. A more elegant approach
would be to use the if/else statement as follows:

if (average >= 60)

cout << "You Pass" << endl;

else

cout << "You Fail" << endl;

In every if/else statement the program can take only one of two possible paths.
Multiple statements can be handled using curly braces in the same way as the if
statement.

The if/else if Statement

The if/else statement works well if there are only two possible paths to follow.
However, what if there are more than two possibilities? For example, suppose we
need to decide what kind of vacation to take based on a yearly work bonus:

if the bonus is less than $1,000, we set up a tent and eat hot dogs in the back yard

if the bonus is less than $10,000 and greater than or equal to $1,000, we go to
Disney World

if the bonus is $10,000, we go to Hawaii

Pre-lab Reading Assignment 43

LM_Chp4.qxd 4/24/03 12:35 PM Page 43

We could code this using the if/else if statement as follows:

float bonus;

cout << "Please input the amount of your yearly bonus" << endl;

cin >> bonus;

if (bonus < 1000)

cout << "Another vacation eating hot dogs on the lawn" << endl;

else if (bonus < 10000)

cout << "Off to Disney World!" << endl;

else if (bonus == 10000)

cout << "Lets go to Hawaii!" << endl;

Can you explain why the first else if conditional statement does not require a
greater than or equal to 1000 condition?

In general we can use as many else if expressions as needed to solve a
given problem.

The Trailing else

What happens in the code above if the bonus entered is greater than $10,000?
Actually, nothing will happen since none of the conditional expressions are true
in this case. Sometimes it is advantageous to add a final or trailing else at the
end of a chain of if/else if statements to handle “all other cases.” For exam-
ple, we could modify the code to read:

if (bonus < 1000)

cout << "Another vacation on the lawn" << endl;

else if (bonus < 10000)

cout << "Off to Disney World!" << endl;

else if (bonus == 10000)

cout << "Lets go to Hawaii!" << endl;

else

{

cout << bonus << " is not a valid bonus" << endl;

cout << "Please run the program again with valid data" << endl;

} // Note the necessary use of the curly brackets here

Of course, few would complain about a bonus greater than $10,000 and the
Hawaii trip could still be done on this budget. However, if the maximum possi-
ble bonus is $10,000, then the trailing else will let the user know that an illegal
value has been entered.

Nested if Statements

Often programmers use an if statement within another if statement. For exam-
ple, suppose a software engineering company wants to screen applicants first for
experienced programmers and second for C++ programmers specifically. One
possible program is the following:

44 LESSON SET 4 Conditional Statements

LM_Chp4.qxd 4/24/03 12:35 PM Page 44

Sample Program 4.2:

#include <iostream>

using namespace std;

int main()

{

char programmer, cPlusPlus;

cout << "Before we consider your application, answer the following"

<< endl;

cout << " yes (enter Y) or no (enter N)" << endl;

cout << "Are you a computer programmer?" << endl;

cin >> programmer;

if (programmer == 'Y')

{

cout << "Do you program in C++?" << endl;

cin >> cPlusPlus;

if (cPlusPlus == 'Y')

cout << " You look like a promising candidate for employment"

<< endl;

else if (cPlusPlus == 'N')

cout << " You need to learn C++ before further consideration"

<< endl;

else

cout << " You must enter Y or N" << endl;

}

else if (programmer == 'N')

cout << " You are not currently qualified for employment" << endl;

else

cout << " You must enter Y or N" << endl;

return 0;

}

Note how C++ programmers are identified using a nested if statement. Also
note how the trailing else is used to detect invalid input.

Logical Operators

By using relational operators C++ programmers can create relational expressions.
Programmers can also combine truth values into a single expression by using
logical operators. For example, instead of a statement such as “if it is sunny, then
we will go outside,” one may use a statement such as “if it is sunny and it is warm,
then we will go outside.” Note that this statement has two smaller statements “it
is sunny” and “it is warm” joined by the AND logical operator. To evaluate to true,
both the sunny and warm requirements must be met.

Pre-lab Reading Assignment 45

LM_Chp4.qxd 4/24/03 12:35 PM Page 45

The NOT operator negates a single statement. For example, “it is sunny” can be
negated by “it is not sunny.”

The OR operator is similar to the AND in that it connects two statements.
However, there is an ambiguity about the meaning of the word or in English. In the
statement “tonight at 8:00 I will go to the concert in the park or I will go to the sta-
dium to see the ball game,” the word or is exclusive. That is, I can go to the con-
cert or to the game, but not both. However, in the statement “I need to draw an ace
or a king to have a good poker hand,” the word or is inclusive. In other words, I
can draw a king, an ace, or even both, and I will have a good hand. So we have a
choice to make. Let A and B be two statements. A OR B could mean A or B but not
both. It could also mean A or B or both. In computer science we use the second
meaning of the word or. For example, in the statement “if it is sunny or it is warm,
then I will go outside,” there are three scenarios where I will go outside: if it is
sunny but not warm, if it is warm but not sunny, or if it is sunny and warm.

The syntax used by C++ for logical operators is the following:

AND &&
OR | |
NOT !

Consider the following:

if (dollars <= 0 || !(accountActive))

cout << " You may not withdraw money from the bank";

It is good programming practice to enclose the operand after the (!) operator in
parentheses. Unexpected things can happen in complicated expressions if you do
not. When will this code execute the cout statement? What type of variable do
you think accountActive is?

The switch Statement

We have already seen how if statements can affect the branching of a program
during execution. Another way to do this is using the switch statement. It is also
a conditional statement. The switch statement uses the value of an integer expres-
sion to determine which group of statements to branch through. The sample
program below illustrates the syntax.

Sample Program 4.3:

#include <iostream>

using namespace std;

int main()

{

char grade;

cout << "What grade did you earn in Programming I?" << endl;

cin >> grade;

switch(grade) // This is where the switch statement begins

{

case 'A':cout << "an A - excellent work!" << endl;

break;

46 LESSON SET 4 Conditional Statements

LM_Chp4.qxd 4/24/03 12:35 PM Page 46

case 'B':cout << "you got a B - good job" << endl;

break;

case 'C':cout << "earning a C is satisfactory" << endl;

break;

case 'D':cout << "while D is passing, there is a problem" << endl;

break;

case 'F':cout << "you failed - better luck next time" << endl;

break;

default:cout << "You did not enter an A, B, C, D, or F" << endl;
}

return 0;

}

Note the use of the curly braces that enclose the cases and the use of break; after
each case. Also, consider the variable grade. It is defined as a character data type
and the case statements have character arguments such as 'B'. This seems to con-
tradict what we said above, namely that the switch statement uses the value of inte-
ger expressions to determine branching. However, this apparent contradiction is
resolved by the compiler automatically converting character data into the integer
data type. Finally, notice the role of the default statement. The default branch is
followed if none of the case expressions match the given switch expression.

Character & string comparisons

So far, relational operators have been used to compare numeric constants and vari-
ables. Characters and string objects can also be compared with the same opera-
tors. For example:

char letter = 'F';

string word = "passed";

switch(letter)

{

case 'A': cout << "Your grade is A." << endl;

break;

case 'B': cout << "Your grade is B." << endl;

break;

case 'C: cout << "Your grade is C." << endl;

break;

case 'D': cout << "Your grade is D." << endl;

break;

case 'F': word = "failed";

break;

default: cout << "You did not enter an A,B,C,D or F" << endl;

}

if (word == "passed")

cout << "You passed" << endl;

else

cout << "You failed" << endl;

What is printed ?

Pre-lab Reading Assignment 47

LM_Chp4.qxd 4/24/03 12:35 PM Page 47

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. The two possible values for a relational expression are
and .

2. C++ uses the symbol to represent the AND operator.

3. The switch statement and if statements are examples of
statements.

4. In C++ is the meaning of the OR logical operator inclusive or exclusive?

5. C++ uses the symbol to represent the OR operator.

6. It is good programming practice to do what to the operand after the NOT
operator?

7. The switch statement uses the value of a(n) expression
to determine which group of statements to branch through.

8. In a switch statement the branch is followed if none of
the case expressions match the given switch expression.

9. C++ allows the programmer to compare numeric values using
.

10. The C++ symbol for equality is .

L E S S O N 4 A

LAB 4.1 Relational Operators and the if Statement

Exercise 1: Bring in the file initialize.cpp from the Lab 4 folder. The code
follows:

// This program tests whether or not an initialized value

// is equal to a value input by the user

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

int num1, // num1 is not initialized

num2 = 5; // num2 has been initialized to 5

cout << "Please enter an integer" << endl;

cin >> num1;

cout << "num1 = " << num1 << " and num2 = " << num2 << endl;

if (num1 = num2)

cout << "Hey, that’s a coincidence!" << endl;

48 LESSON SET 4 Conditional Statements

LM_Chp4.qxd 4/24/03 12:35 PM Page 48

if (num1 != num2)

cout << "The values are not the same" << endl;

return 0;

}

Exercise 1: Run the program several times using a different input each time.
Does the program do what you expect? Is so, explain what it is doing. If
not, locate the error and fix it.

Exercise 2: Modify the program so that the user inputs both values to be
tested for equality. Make sure you have a prompt for each input. Test the
program with pairs of values that are the same and that are different.

Exercise 3: Modify the program so that when the numbers are the same it
prints the following lines:

The values are the same.

Hey that’s a coincidence!

Exercise 4: Modify the revised Exercise 3 program by replacing the two if
statements with a single if/else statement. Run the program again to test
the results.

LAB 4.2 if/else if Statements

Bring in the file grades.cpp from the Lab 4 folder. The code follows:

// This program prints "You Pass" if a student's average is

// 60 or higher and prints "You Fail" otherwise

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

float average; // holds the grade average

cout << "Input your average:" << endl;

cin >> average;

if (average > 60)

cout << "You Pass" << endl;

if (average < 60)

cout << "You Fail" << endl;

return 0;

}

Lesson 4A 49

LM_Chp4.qxd 4/24/03 12:35 PM Page 49

Exercise 1: Run the program three times using 80, 55 and 60 for the average.
What happens when you input 60 as the average? Modify the first if
statement so that the program will also print “You Pass” if the average
equals 60.

Exercise 2: Modify the program so that it uses an if/else statement rather
than two if statements.

Exercise 3: Modify the program from Exercise 2 to allow the following cate-
gories: Invalid data (data above 100), ‘A’ category (90–100), ‘B’ category
(80–89), “You Pass” category (60–79), “You Fail” category (0–59).
What will happen to your program if you enter a negative value such as -12?

Lab 4.3 Logical Operators

Retrieve LogicalOp.cpp from the Lab 4 folder. The code is as follows:

// This program illustrates the use of logical operators

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

char year;

float gpa;

cout << "What year student are you ?" << endl;

cout << "Enter 1 (freshman), 2 (sophomore), 3 (junior), or 4 (senior)"

<< endl << endl;

cin >> year;

cout << "Now enter your GPA" << endl;

cin >> gpa;

if (gpa >= 2.0 && year == '4')

cout << "It is time to graduate soon" << endl;

else if (year != '4'|| gpa <2.0)

cout << "You need more schooling" << endl;

return 0;

}

Exercise 1: How could you rewrite gpa >= 2.0 in the first if statement using
the NOT operator?

Exercise 2: Could you replace year !='4' in the else if statement with
year < 4 or year <= 3? Why or why not?

50 LESSON SET 4 Conditional Statements

LM_Chp4.qxd 4/24/03 12:35 PM Page 50

Exercise 3: If you replace

if (gpa >= 2.0 && year == '4')

with

if (gpa >= 2.0 || year == '4')

and replace

else if (year != '4'|| gpa < 2.0)

with

else if (year != '4' && gpa < 2.0)

which students will graduate and which will not graduate according to this
new program?

Does this handle all cases (i.e., all combinations of year and gpa)?

Exercise 4: Could you replace else if (year != '4'|| gpa < 2.0) with the
single word else?

L E S S O N 4 B

LAB 4.4 The switch Statement

Exercise 1: Bring in the file switch.cpp from the Lab 4 folder. This is Sample
Program 4.3 from the Pre-lab Reading Assignment. The code is shown
below. Remove the break statements from each of the cases. What is the
effect on the execution of the program?

// This program illustrates the use of the switch statement.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

char grade;

cout << "What grade did you earn in Programming I ?" << endl;

cin >> grade;

switch(grade) // This is where the switch statement begins

{

case 'A': cout << "an A - excellent work !" << endl;

break;

case 'B': cout << "you got a B - good job" << endl;

break;

case 'C': cout << "earning a C is satisfactory" << endl;

break;

case 'D': cout << "while D is passing, there is a problem" << endl;

break;

Lesson 4B 51

LM_Chp4.qxd 4/24/03 12:35 PM Page 51

case 'F': cout << "you failed - better luck next time" << endl

break;

default: cout << "You did not enter an A, B, C, D, or F" << endl;

}

return 0;

}

output.

Sample Run:

What grade did you earn in Programming I ?
A
YOU PASSED!
an A - excellent work!

Exercise 3: Rewrite the program switch.cpp using if and else if statements
rather than a switch statement. Did you use a trailing else in your new
version? If so, what did it correspond to in the original program with the
switch statement?

LAB 4.5 Student Generated Code Assignments

Option 1: Write a program that prompts the user for their quarterly water bill
for the last four quarters. The program should find and output their
average monthly water bill. If the average bill exceeds $75, the output
should include a message indicating that too much water is being used. If
the average bill is at least $25 but no more than $75, the output should
indicate that a typical amount of water is being used. Finally, if the
average bill is less than $25, the output should contain a message praising
the user for conserving water. Use the sample run below as a model for
your output.

Sample Run 1:

Please input your water bill for quarter 1:
300

Please input your water bill for quarter 2:
200

Please input your water bill for quarter 3:
225

Please input your water bill for quarter 4:
275

Your average monthly bill is $83.33. You are using excessive amounts of water

52 LESSON SET 4 Conditional Statements

LM_Chp4.qxd 4/24/03 12:35 PM Page 52

for a grade of D or better. Use the sample run given below to model your
Exercise 2: Add an additional switch statement that allows for a Passing option

Sample Run 2:

Please input your water bill for quarter 1:
100

Please input your water bill for quarter 2:
150

Please input your water bill for quarter 3:
75

Please input your water bill for quarter 4:
125

Your average monthly bill is $37.50. You are using a typical amount of water

Option 2: The local t-shirt shop sells shirts that retail for $12. Quantity dis-
counts are given as follow:

Number of Shirts Discount
5–10 10%
11–20 15%
21–30 20%
31 or more 25%

Write a program that prompts the user for the number of shirts required
and then computes the total price. Make sure the program accepts only
nonnegative input.

Use the following sample runs to guide you:

Sample Run 1:

How many shirts would you like ?
4

The cost per shirt is $12 and the total cost is $48

Sample Run 2:

How many shirts would you like ?
0

The cost per shirt is $12 and the total cost is $0

Sample Run 3:

How many shirts would you like ?
8

The cost per shirt is $10.80 and the total cost is $86.40

Sample Run 4:

How many shirts would you like ?
-2

Invalid Input: Please enter a nonnegative integer

Lesson 4B 53

LM_Chp4.qxd 4/24/03 12:35 PM Page 53

Option 3: The University of Guiness charges $3000 per semester for in-state
tuition and $4500 per semester for out-of-state tuition. In addition, room
and board is $2500 per semester for in-state students and $3500 per
semester for out-of-state students. Write a program that prompts the user
for their residential status (i.e., in-state or out-of-state) and whether they
require room and board (Y or N). The program should then compute and
output their bill for that semester.

Use the sample output below:

Sample Run 1:

Please input "I" if you are in-state or "O" if you are out-of-state:
I

Please input "Y" if you require room and board and "N" if you do not:
N

Your total bill for this semester is $3000

Sample Run 2:

Please input "I" if you are in-state or "O" if you are out-of-state:
O

Please input "Y" if you require room and board and "N" if you do not:
Y

Your total bill for this semester is $8000

54 LESSON SET 4 Conditional Statements

LM_Chp4.qxd 4/24/03 12:35 PM Page 54

L E S S O N S E T

Looping Statements

PURPOSE 1. To introduce counter and event controlled loops

2. To work with the while loop

3. To introduce the do-while loop

4. To work with the for loop

5. To work with nested loops

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

3. In the lab, students should complete labs assigned to them by the instructor.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment 20 min. 56

Pre-lab Writing Assignment Pre-lab reading 10 min. 64

LESSON 5A

Lab 5.1
Working with the while Loop Basic understanding 25 min. 64

of the while loop

Lab 5.2
Working with the Basic understanding 25 min. 66
do-while Loop of do-while loop

LESSON 5B

Lab 5.3
Working with the for Loop Understanding of for 15 min. 68

loops

Lab 5.4
Nested Loops Understanding of 15 min 69

nested for loops

Lab 5.5
Student Generated Code Basic understanding 30 min. 71
Assignments of loop control structures

5

55

LM_Chp5.qxd 4/24/03 12:36 PM Page 55

P R E - L A B R E A D I N G A S S I G N M E N T

Increment and Decrement Operator

To execute many algorithms we need to be able to add or subtract 1 from a giv-
en integer quantity. For example:

count = count + 1; // what would happen if we used ==

// instead of = ?

count += 1;

Both of these statements increment the value of count by 1. If we replace “+”
with “-” in the above code, then both statements decrement the value of
count by 1. C++ also provides an increment operator ++ and a decrement
operator -- to perform these tasks. There are two modes that can be used:

count++; // increment operator in the postfix mode

count--; // decrement operator in the postfix mode

++count; // increment operator in the prefix mode

--count; // decrement operator in the prefix mode

The two increment statements both execute exactly the same. So do the decre-
ment operators. What is the purpose of having postfix and prefix modes? To
answer this, consider the following code:

int age = 49;

if (age++ > 49)

cout << "Congratulations - You have made it to the half-century"

<< " mark !" << endl;

In this code, the cout statement will not execute. The reason is that in the post-
fix mode the comparison between age and 49 is made first. Then the value of
age is incremented by one. Since 49 is not greater than 49, the if conditional
is false. Things are much different if we replace the postfix operator with the pre-
fix operator:

int age = 49;

if (++age > 49)

cout << " Congratulations - You have made it to the half-century"

<< " mark !" << endl;

In this code age is incremented first. So its value is 50 when the comparison is
made. The conditional statement is true and the cout statement is executed.

The while Loop

Often in programming one needs a statement or block of statements to repeat dur-
ing execution. This can be accomplished using a loop. A loop is a control struc-
ture that causes repetition of code within a program. C++ has three types of
loops. The first we will consider is the while loop. The syntax is the following:

while (expression)

{

statement_1;

statement_2;

:

statement_n;

}

56 LESSON SET 5 Looping Statements

LM_Chp5.qxd 4/24/03 12:36 PM Page 56

If there is only one statement, then the curly braces can be omitted. When a
while loop is encountered during execution, the expression is tested to see if it
is true or false. The block of statements is repeated as long as the expression is
true. Consider the following:

Sample Program 5.1:

#include <iostream>

using namespace std;

int main()

{

int num = 5;

int numFac = 1;

while (num > 0)

{

numFac = numFac * num;

num––; // note the use of the decrement operator

}

cout << " 5! = " << numFac << endl;

return 0;

}

This program computes 5! = 5 * 4 * 3 * 2 * 1 and then prints the result to the screen.
Note how the while loop controls the execution. Since num = 5 when the while
loop is first encountered, the block of statements in the body of the loop is exe-
cuted at least once. In fact, the block is executed 5 times because of the decre-
ment operator which forces the value of num to decrease by one every time the
block is executed. During the fifth iteration of the loop num becomes 0, so the
next time the expression is tested num > 0 is false and the loop is exited. Then
the cout statement is executed.

What do you think will happen if we eliminated the decrement operator
num–– in the above code? The value of num is always 5. This means that the
expression num > 0 is always true! If we try to execute the modified program,
the result is an infinite loop, i.e., a block of code that will repeat forever. One
must be very cautious when using loops to ensure that the loop will termi-

nation.

Sample Program 5.2:

#include <iostream>

using namespace std;

int main()

{

char letter = 'a';

while (letter != 'x')

Pre-Lab Reading Assignment 57

continues

LM_Chp5.qxd 4/24/03 12:36 PM Page 57

nate. Here is another example where the user may have trouble with termi-

{

cout << "Please enter a letter" << endl;

cin >> letter;

cout << "The letter your entered is " << letter << endl;

}

return 0;

}

Note that this program requires input from the user during execution. Infinite
loops can be avoided, but it would help if the user knew that the 'x' charac-
ter terminates the execution. Without this knowledge the user could continual-
ly enter characters other than 'x' and never realize how to terminate the
program. In the lab assignments you will be asked to modify this program to make
it more user friendly.

Counters

Often a programmer needs to control the number of times a particular loop is
repeated. One common way to accomplish this is by using a counter. For exam-
ple, suppose we want to find the average of five test scores. We must first input
and add the five scores. This can be done with a counter-controlled loop as
shown in Sample Program 5.3. Notice how the variable named test works as a
counter. Also notice the use of a constant for the number of tests. This is done
so that the number of tests can easily be changed if we want a different number
of tests to be averaged.

Sample Program 5.3:

#include <iostream>

using namespace std;

const int NUMBEROFTESTS = 5;

int main()

{

int score ; // the individual score read in

float total = 0.0; // the total of the scores

float average; // the average of the scores

int test = 1; // counter that controls the loop

while (test <= NUMBEROFTESTS) // Note that test is 1 the first time

// the expression is tested

{

cout << "Enter your score on test " << test << ": " << endl;

cin >> score;

total = total + score;

test++;

}

average = total / NUMBEROFTESTS;

58 LESSON SET 5 Looping Statements

LM_Chp5.qxd 4/24/03 12:36 PM Page 58

cout << "Your average based on " << NUMBEROFTESTS

<< " test scores is " << average << endl;

return 0;

}

Sample Program 5.3 can be made more flexible by adding an integer variable called
numScores that would allow the user to input the number of tests to be processed.

Sentinel Values

We can also control the execution of a loop by using a sentinel value which is
a special value that marks the end of a list of values. In a variation of the previ-
ous program example, if we do not know exactly how many test scores there are,
we can input scores which are added to total until the sentinel value is input.
Sample Program 5.4 revises Sample Program 5.3 to control the loop with a sen-
tinel value. The sentinel in this case is -1 since it is an invalid test score. It does
not make sense to use a sentinel between 0 and 100 since this is the range of valid
test scores. Notice that a counter is still used to keep track of the number of test
scores entered, although it does not control the loop. What happens if the first
value the user enters is a -1?

Sample Program 5.4:
#include <iostream>

using namespace std;

int main()

{

int score ; // the individual score read in

float total = 0.0; // the total of the scores

float average; // the average of the scores

int test = 1; // counter that controls the loop

cout << "Enter your score on test " << test

<< " (or -1 to exit): " << endl;

cin >> score; // Read the 1st score

while (score != -1) // While we have not entered the sentinel

// (ending) value, do the loop

{

total = total + score;

test++;

cout << "Enter your score on test " << test

<< " (or -1 to exit): " << endl;

cin >> score; // Read the next score

Pre-Lab Reading Assignment 59

continues

LM_Chp5.qxd 4/24/03 12:36 PM Page 59

}

if (test > 1) // If test = 1, no scores were entered

{

average = total / (test - 1);

cout << "Your average based on " << (test - 1)

<< " test scores is " << average << endl;

}

return 0;

}

Notice that the program asks for input just before the while loop begins and
again as the last instruction in the while loop. This is done so that the while loop
can test for sentinel data. Often this is called priming the read and is frequently
implemented when sentinel data is used to end a loop.

Data Validation

One nice application of the while loop is data validation. The user can input data
(from the keyboard or a file) and then a while loop tests to see if the value(s)
is valid. The loop is skipped for all valid input but for invalid input the loop is
executed and prompts the user to enter new (valid) input. The following is an
example of data validation.

cout << "Please input your choice of drink "

<< "(a number from 1 to 4 or 0 to quit)" << endl;

cout << " 1 - Coffee" << endl

<< " 2 - Tea" << endl

<< " 3 - Coke" << endl

<< " 4 - Orange Juice" << endl << endl

<< " 0 - QUIT" << endl << endl;

cin >> beverage;

while (beverage < 0 || beverage > 4)

{

cin >> beverage;

}

What type of invalid data does this code test for? If beverage is an integer vari-
able, what happens if the user enters the character ‘$’ or the float 2.9?

The do-while Loop

The while loop is a pre-test or top test loop. Since we test the expression before
entering the loop, if the test expression in the while loop is initially false, then
no iterations of the loop will be executed. If the programmer wants the loop to
be executed at least once, then a post-test or bottom test loop should be used.
C++ provides the do-while loop for this purpose. A do-while loop is similar to
a while loop except that the statements inside the loop body are executed before

60 LESSON SET 5 Looping Statements

LM_Chp5.qxd 4/24/03 12:36 PM Page 60

cout << "Valid choices are 0 - 4. Please re-enter: ";

the expression is tested. The format for a single statement in the loop body is the
following:
do

statement;

while (expression);

Note that the statement must be executed once even if the expression is false. To
see the difference between these two loops consider the code

int num1 = 5;

int num2 = 7;

while (num2 < num1)

{

num1 = num1 + 1;

num2 = num2 - 1;

}

Here the statements num1 = num1 + 1 and num2 = num2 - 1 are never executed since
the test expression num2 < num1 is initially false. However, we get a different
result using a do-while loop:

int num1 = 5;

int num2 = 7;

do

{

num1 = num1 + 1;

num2 = num2 - 1;

} while (num2 < num1);

In this code the statements num1 = num1 + 1 and num2 = num2 - 1 are executed
exactly once. At this point num1 = 6 and num2 = 6 so the expression num2 < num1

is false. Consequently, the program exits the loop and moves to the next section
of code. Also note that since we need a block of statements in the loop body, curly
braces must be placed around the statements. In Lab 5.2 you will see how do-
while loops can be useful for programs that involve a repeating menu.

The for Loop

The for loop is often used for applications that require a counter. For example,
suppose we want to find the average (mean) of the first n positive integers. By
definition, this means that we need to add 1 + 2 + 3 + . . . + n and then divide
by n. Note this should just give us the value in the “middle” of the list 1, 2, . . . , n.
Since we know exactly how many times we are performing a sum, the for loop
is the natural choice.

The syntax for the for loop is the following:

for (initialization; test; update)

{

statement_1;

statement_2;

:

statement_n;

}

Pre-Lab Reading Assignment 61

LM_Chp5.qxd 4/24/03 12:36 PM Page 61

Notice that there are three expressions inside the parentheses of the for statement,
separated by semicolons.

1. The initialization expression is typically used to initialize a counter that
must have a starting value. This is the first action performed by the loop
and is done only once.

2. The test expression, as with the while and do-while loops, is used to
control the execution of the loop. As long as the test expression is true,
the body of the for loop repeats. The for loop is a pre-test loop which
means that the test expression is evaluated before each iteration.

3. The update expression is executed at the end of each iteration. It
typically increments or decrements the counter.

Now we are ready to add the first n positive integers and find their mean value.

Sample Program 5.5:

#include <iostream>

using namespace std;

int main()

{

int value;

int total = 0;

int number;

float mean;

cout << "Please enter a positive integer" << endl;

cin >> value;

if (value > 0)

{

for (number = 1; number <= value; number++)

{

total = total + number;

} // curly braces are optional since

// there is only one statement

// note the use of the typecast

// operator

cout << "The mean average of the first " << value

<< " positive integers is " << mean << endl;

}

else

cout << "Invalid input - integer must be positive" << endl;

return 0;

}

Note that the counter in the for loop of Sample Program 5.5 is number. It incre-
ments from 1 to value during execution. There are several other features of this
code that also need to be addressed. First of all, why is the typecast operator
needed to compute the mean? What do you think will happen if it is removed?

62 LESSON SET 5 Looping Statements

LM_Chp5.qxd 4/24/03 12:36 PM Page 62

mean = static_cast<float>(total) / value;

Finally, what would happen if we entered a float such as 2.99 instead of an inte-
ger? Lab 5.3 will demonstrate what happens in these cases.

Nested Loops

Often programmers need to use a loop within a loop, or nested loops. Sample Program
5.6 below provides a simple example of a nested loop. This program finds the average
number of hours per day spent programming by each student over a three-day week-
end. The outer loop controls the number of students and the inner loop allows the
user to enter the number of hours worked each of the three days for a given student.
Note that the inner loop is executed three times for each iteration of the outer loop.

Sample Program 5.6:

// This program finds the average time spent programming by a student each

// day over a three day period.

#include <iostream>

using namespace std;

int main()

{

int numStudents;

float numHours, total, average;

int count1 = 0, count2 = 0; // these are the counters for the loops

cout << "This program will find the average number of hours a day"

<< " that each given student spent programming over a long weekend"

<< endl << endl;

cout << "How many students are there ?" << endl << endl;

cin >> numStudents;

for (count1 = 1; count1 <= numStudents; count1++)

{

total = 0;

for (count2 = 1; count2 <= 3; count2++)

{

cout << "Please enter the number of hours worked by student "

<< count1 << " on day " << count2 << "." << endl;

cin >> numHours;

total = total + numHours;

}

average = total / 3;

cout << endl;

cout << "The average number of hours per day spent programming by"

<< " student " << count1 <<" is " << average

<< endl << endl << endl;

}

return 0.

}

In Lab 5.4 you will be asked to modify this program to make it more flexible.

Pre-Lab Reading Assignment 63

LM_Chp5.qxd 4/24/03 12:36 PM Page 63

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. A block of code that repeats forever is called .

2. To keep track of the number of times a particular loop is repeated, one
can use a(n) .

3. An event controlled loop that is always executed at least once is the
.

4. An event controlled loop that is not guaranteed to execute at least once is
the .

5. In the conditional if(++number < 9), the comparison number < 9 is made
and number is incremented . (Choose

first or second for each blank.)

6. In the conditional if(number++ < 9), the comparison number < 9 is made
and number is incremented . (Choose

first or second for each blank.)

7. A loop within a loop is called a .

8. To write out the first 12 positive integers and their cubes, one should use
a(n) loop.

9. A(n) value is used to indicate the end of a list of values.
It can be used to control a while loop.

10. In a nested loop the loop goes through all of its itera-
tions for each iteration of the loop. (Choose inner or
outer for each blank.)

L E S S O N 5 A

LAB 5.1 Working with the while Loop

Bring in program while.cpp from the Lab 5 folder. (This is Sample Program 5.2
from the Pre-lab Reading Assignment). The code is shown below:

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

char letter = 'a';

while (letter != 'x')

{

cout << "Please enter a letter" << endl;

cin >> letter;

cout << "The letter you entered is " << letter << endl;

}

return 0;

}

64 LESSON SET 5 Looping Statements

LM_Chp5.qxd 4/24/03 12:36 PM Page 64

Exercise 1: This program is not user friendly. Run it a few times and explain
why.

Exercise 2: Add to the code so that the program is more user friendly.

Exercise 3: How would this code affect the execution of the program if the
while loop is replaced by a do-while loop? Try it and see.

Bring in program sentinel.cpp from the Lab 5 Folder. The code is shown below:

// This program illustrates the use of a sentinel in a while loop.

// The user is asked for monthly rainfall totals until a sentinel

// value of -1 is entered. Then the total rainfall is displayed.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

// Fill in the code to define and initialize to 1 the variable month

float total = 0, rain;

cout << "Enter the total rainfall for month " << month << endl;

cout << "Enter -1 when you are finished" << endl;

// Fill in the code to read in the value for rain

// Fill in the code to start a while loop that iterates

// while rain does not equal -1

{

// Fill in the code to update total by adding it to rain

// Fill in the code to increment month by one

cout << "Enter the total rainfall in inches for month "

<< month << endl;

cout << "Enter -1 when you are finished" << endl;

// Fill in the code to read in the value for rain

}

if (month == 1)

cout << "No data has been entered" << endl;

else

cout << "The total rainfall for the " << month-1

Lesson 5A 65

continues

LM_Chp5.qxd 4/24/03 12:36 PM Page 65

<< " months is "<< total << " inches." << endl;

return 0;

}

Exercise 4: Complete the program above by filling in the code described in the
statements in bold so that it will perform the indicated task.

Exercise 5: Run the program several times with various input. Record your
results. Are they correct? What happens if you enter –1 first? What happens
if you enter only values of 0 for one or more months? Is there any numeri-
cal data that you should not enter?

Exercise 6: What is the purpose of the following code in the program above?

if (month == 1)

cout << "No data has been entered" << endl;

LAB 5.2 Working with the do-while Loop

Bring in the program dowhile.cpp from the Lab 5 folder. The code is shown
below:

// This program displays a hot beverage menu and prompts the user to

// make a selection. A switch statement determines which item the user

// has chosen. A do-while loop repeats until the user selects item E

// from the menu.

// PLACE YOUR NAME HERE

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

// Fill in the code to define an integer variable called number,

// a floating point variable called cost,

// and a character variable called beverage

bool validBeverage;

cout << fixed << showpoint << setprecision(2);

do

{

cout << endl << endl;

cout << "Hot Beverage Menu" << endl << endl;

cout << "A: Coffee $1.00" << endl;

cout << "B: Tea $.75" << endl;

cout << "C: Hot Chocolate $1.25" << endl;

cout << "D: Cappuccino $2.50" << endl << endl << endl;

66 LESSON SET 5 Looping Statements

LM_Chp5.qxd 4/24/03 12:36 PM Page 66

cout << "Enter the beverage A,B,C, or D you desire" << endl;

cout << "Enter E to exit the program" << endl << endl;

// Fill in the code to read in beverage

switch(beverage)

{

case 'a':

case 'A':

case 'b':

case 'B':

case 'c':

case 'C':

case 'd':

case 'D': validBeverage = true;

break;

default: validBeverage = false;

}

if (validBeverage == true)

{

cout << "How many cups would you like?" << endl;

// Fill in the code to read in number

}

// Fill in the code to begin a switch statement

// that is controlled by beverage

{

case 'a':

case 'A': cost = number * 1.0;

cout << "The total cost is $ " << cost << endl;

break;

// Fill in the code to give the case for hot chocolate ($1.25 a cup)

// Fill in the code to give the case for tea ($0.75 a cup)

// Fill in the code to give the case for cappuccino ($2.50 a cup)

case 'e':

case 'E': cout << " Please come again" << endl;

break;

default:cout << // Fill in the code to write a message

// indicating an invalid selection.

cout << " Try again please" << endl;

}

} // Fill in the code to finish the do-while statement with the

// condition that beverage does not equal E or e.

// Fill in the appropriate return statement

}

Lesson 5A 67

LM_Chp5.qxd 4/24/03 12:36 PM Page 67

Exercise 1: Fill in the indicated code to complete the above program. Then
compile and run the program several times with various inputs. Try all the
possible relevant cases and record your results.

Exercise 2: What do you think will happen if you do not enter A, B, C, D
or E? Try running the program and inputting another letter.

Exercise 3: Replace the line
if (validBeverage == true)

with the line
if (validBeverage)

and run the program again. Are there any differences in the execution of
the program? Why or why not?

L E S S O N 5 B

LAB 5.3 Working with the for Loop

Bring in program for.cpp from the Lab 5 folder (this is Sample Program 5.5 from
the Pre-lab Reading Assignment). This program has the user input a number n and
then finds the mean of the first n positive integers. The code is shown below:

// This program has the user input a number n and then finds the

// mean of the first n positive integers

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

int value; // value is some positive number n

int total = 0; // total holds the sum of the first n positive numbers

int number; // the amount of numbers

float mean; // the average of the first n positive numbers

cout << "Please enter a positive integer" << endl;

cin >> value;

if (value > 0)

{

for (number = 1; number <= value; number++)

{

total = total + number;

} // curly braces are optional since there is only one statement

// operator here

cout << "The mean average of the first " << value

<< " positive integers is " << mean << endl;

68 LESSON SET 5 Looping Statements

LM_Chp5.qxd 4/24/03 12:36 PM Page 68

mean = static_cast<float>(total) / value; // note the use of the typecast

}

else

cout << "Invalid input - integer must be positive" << endl;

return 0;

}

Exercise 1: Why is the typecast operator needed to compute the mean in the

Exercise 2: What happens if you enter a float such as 2.99 instead of an integer
for value? Try it and record the results.

Exercise 3: Modify the code so that it computes the mean of the consecutive
positive integers n, n+1, n+2, . . . , m, where the user chooses n and m.
For example, if the user picks 3 and 9, then the program should find the
mean of 3, 4, 5, 6, 7, 8, and 9, which is 6.

LAB 5.4 Nested Loops

Bring in program nested.cpp from the Lab 5 folder (this is Sample Program 5.6
from the Pre-lab Reading Assignment). The code is shown below:

// This program finds the average time spent programming by a student

// each day over a three day period.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

int numStudents;

float numHours, total, average;

int student,day = 0; // these are the counters for the loops

cout << "This program will find the average number of hours a day"

<< " that a student spent programming over a long weekend\n\n";

cout << "How many students are there ?" << endl << endl;

cin >> numStudents;

for(student = 1; student <= numStudents; student++)

{

total = 0;

for(day = 1; day <= 3; day++)

{

cout << "Please enter the number of hours worked by student "

<< student <<" on day " << day << "." << endl;

cin >> numHours;

Lesson 5B 69

continues

LM_Chp5.qxd 4/24/03 12:36 PM Page 69

statement mean = static_cast(float)(total)/value;? What do you think
will happen if it is removed? Modify the code and try it. Record what happens.

total back in the program.
Make sure that you try both even and odd cases. Now put static_cast<float>

total = total + numHours;

}

average = total / 3;

cout << endl;

cout << "The average number of hours per day spent programming by "

<< "student " << student << " is " << average

<< endl << endl << endl;

}

return 0;

}

Exercise 1: Note that the inner loop of this program is always executed exactly
three times—once for each day of the long weekend. Modify the code so
that the inner loop iterates n times, where n is a positive integer input by
the user. In other words, let the user decide how many days to consider
just as they choose how many students to consider.

Sample Run:

This program will find the average number of hours a day that a student spent
programming over a long weekend

How many students are there?
2
Enter the number of days in the long weekend
2

Please enter the number of hours worked by student 1 on day 1
4

Please enter the number of hours worked by student 1 on day 2
6

The average number of hours per day spent programming by student 1 is 5

Please enter the number of hours worked by student 2 on day 1
9

Please enter the number of hours worked by student 2 on day 2
13

The average number of hours per day spent programming by student 2 is 11

Exercise 2: Modify the program from Exercise 1 so that it also finds the average
number of hours per day that a given student studies biology as well as
programming. For each given student include two prompts, one for each
subject. Have the program print out which subject the student, on average,
spent the most time on.

70 LESSON SET 5 Looping Statements

LM_Chp5.qxd 4/24/03 12:36 PM Page 70

LAB 5.5 Student Generated Code Assignments

Option 1: Write a program that performs a survey tally on beverages. The
program should prompt for the next person until a sentinel value of –1 is
entered to terminate the program. Each person participating in the survey
should choose their favorite beverage from the following list:

1. Coffee 2. Tea 3. Coke 4. Orange Juice

Sample Run:

Please input the favorite beverage of person #1: Choose 1, 2, 3, or 4 from the
above menu or -1 to exit the program
4

Please input the favorite beverage of person #2: Choose 1, 2, 3, or 4 from the
above menu or -1 to exit the program
1

Please input the favorite beverage of person #3: Choose 1, 2, 3, or 4 from the
above menu or -1 to exit the program
3

Please input the favorite beverage of person #4: Choose 1, 2, 3, or 4 from the
above menu or -1 to exit the program
1

Please input the favorite beverage of person #5: Choose 1, 2, 3, or 4 from the
above menu or -1 to exit the program
1

Please input the favorite beverage of person #6: Choose 1, 2, 3, or 4 from the
above menu or -1 to exit the program
-1

The total number of people surveyed is 5. The results are as follows:

Beverage Number of Votes

Coffee 3
Tea 0
Coke 1
Orange Juice 1

Option 2: Suppose Dave drops a watermelon off a high bridge and lets it fall
until it hits the water. If we neglect air resistance, then the distance d in
meters fallen by the watermelon after t seconds is d = 0.5 * g * t2, where the
acceleration of gravity g = 9.8 meters/second2. Write a program that asks the
user to input the number of seconds that the watermelon falls and the
height h of the bridge above the water. The program should then calculate
the distance fallen for each second from t = 0 until the value of t input by
the user. If the total distance fallen is greater than the height of the bridge,
then the program should tell the user that the distance fallen is not valid.

Lesson 5B 71

LM_Chp5.qxd 4/24/03 12:36 PM Page 71

Sample Run 1:

Please input the time of fall in seconds:
2
Please input the height of the bridge in meters:
100

Time Falling (seconds) Distance Fallen (meters)

0 0
1 4.9
2 19.6

Sample Run 2:

Please input the time of fall in seconds:
4
Please input the height of the bridge in meters:
50

Time Falling (seconds) Distance Fallen (meters)

0 0
1 4.9
2 19.6
3 44.1
4 78.4

Warning-Bad Data: The distance fallen exceeds the height of the bridge

Option 3: Write a program that prompts the user for the number of tellers at
Nation’s Bank in Hyatesville that worked each of the last three years. For
each worker the program should ask for the number of days out sick for
each of the last three years. The output should provide the number of
tellers and the total number of days missed by all the tellers over the last
three years.

See the sample output below.

Sample Run:

How many tellers worked at Nation’s Bank during each of the last three years ?
2
How many days was teller 1 out sick during year 1 ?
5
How many days was teller 1 out sick during year 2 ?
8
How many days was teller 1 out sick during year 3 ?
2

72 LESSON SET 5 Looping Statements

LM_Chp5.qxd 4/24/03 12:36 PM Page 72

How many days was teller 2 out sick during year 1 ?
1
How many days was teller 2 out sick during year 2 ?
0
How many days was teller 2 out sick during year 3 ?
3

The 2 tellers were out sick for a total of 19 days during the last three years

Lesson 5B 73

LM_Chp5.qxd 4/24/03 12:36 PM Page 73

LM_Chp5.qxd 4/24/03 12:36 PM Page 74

L E S S O N S E T

Introduction to Void Functions
(Procedures)

PURPOSE 1. To introduce the concept of void functions (procedures)

2. To work with void functions (procedures) that have no parameters

3. To introduce and work with void functions (procedures) that have pass by value and
pass by reference parameters

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

3. In the lab, students should complete labs assigned to them by their instructor.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment 20 min. 76

Pre-lab Writing Assignment Pre-lab reading 10 min. 83

LESSON 6.1A

Lab 6.1
Functions with No Confident in use of the 15 min. 84
Parameters control structures

Lab 6.2
Introduction to Pass by Value Basic understanding of 35 min. 84

pass by value.

LESSON 6.1B

Lab 6.3
Introduction to Pass by Basic understanding of 25 min. 86
Reference pass by reference.

Lab 6.4
Student Generated Code Basic understanding of 30 min. 89
Assignments pass by reference and

value.

6.1

75

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 75

P R E - L A B R E A D I N G A S S I G N M E N T

Modules

A key element of structured (well organized and documented) programs is their
modularity: the breaking of code into small units. These units, or modules, that
do not return a value are called procedures in most languages and are called
void functions in C++. Although procedures is the authors’ preferred term, this
manual uses the word function to describe both void functions (discussed in this
lesson set) and value returning functions (studied in the next lesson set), as
this is the terminology used in C++.

The int main() section of our program is a function and, up until now, has
been the only coded module used in our programs. We also have used pre-
defined functions such as pow and sqrt which are defined in library routines and
“imported” to our program with the #include <cmath> directive. We now explore
the means of breaking our own code into modules. In fact, the main function
should contain little more than “calls” to other functions. Think of the main func-
tion as a contractor who hires sub-contractors to perform certain duties: plumbers
to do the plumbing, electricians to do the electrical work, etc. The contractor is
in charge of the order in which these sub-contract jobs are issued.

The int main()function consists mostly of calls to functions just like a con-
tractor issues commands to sub-contractors to come and do their jobs. A computer
does many simple tasks (modules) that, when combined, produce a set of com-
plex operations. How one determines what those separate tasks should be is
one of the skills learned in software engineering, the science of developing qual-
ity software. A good computer program consists of several tasks, or units of code,
called modules or functions.

In simple programs most functions are called, or invoked, by the main func-
tion. Calling a function basically means starting the execution of the instructions
contained in that module. Sometimes a function may need information “passed”
in order to perform designated tasks.

If a function is to find the square root of a number, then it needs that num-
ber passed to it by the calling function. Information is passed to or from a func-
tion through parameters. Parameters are the components of communication
between functions. Some functions do very simple tasks such as printing basic
output statements to the screen. These may be instructions to the user or just
documentation on what the program will do. Such functions are often called
parameter-less functions since they do not require anything passed by the call-
ing procedure.

Sample Program 6.1a:

#include <iostream>

using namespace std;

void printDescription(); // Function prototype

int main()

{

cout << "Welcome to the Payroll Program." << endl;

printDescription(); // Call to the function

76 LESSON SET 6.1 Introduction to Void Functions (Procedures)

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 76

cout << "We hoped you enjoyed this program." << endl;

return 0;

}

//***

// printDescription

//

// Task: This function prints a program description

// Data in: none

//

//***

void printDescription() // The function heading

{

cout << "***"

<< endl << endl;

cout << "This program takes two numbers (pay rate and hours)"

<< endl;

cout << "and outputs gross pay. " << endl;

cout << "***"

<< endl << endl;

}

In this example, three areas have been highlighted. Starting from the bottom we
have the function itself which is often called the function definition.

The function heading void printDescription()consists of the name of the
function preceded by the word void. The word void means that this function will
not return a value to the module that called it.1 The function name is followed
by a set of parentheses. Just like the main function, all functions begin with a left
brace and end with a right brace. In between these braces are the instructions of
the function. In this case they consist solely of cout statements that tell what the
program does.

Notice that this function comes after the main function. How is this function
activated? It must be called by either the main function or another function in the
program. This function is called by main with the simple instruction
printDescription();.

A call to a function can be classified as the sixth fundamental instruction (see
Lesson Set 2). Notice the call consists only of the name of the function (not the
word void preceding it) followed by the set of parentheses and a semicolon. By
invoking its name in this way, the function is called. The program executes the body
of instructions found in that function and then returns to the calling function
(main in this case) where it executes the remaining instructions following the call.
Let us examine the order in which the instructions are executed.

Pre-lab Reading Assignment 77

1 In the next lesson set we will see that the word preceding the name of a function can be
the data type of the value that the function will return to the calling function.

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 77

The main function is invoked which then executes the following instruction:

cout << "Welcome to the Pay Roll Program" << endl;

Next the call to the function printDescription is encountered which executes
the following instructions:

cout << "**" << endl << endl;

cout << "This program takes two numbers (pay rate & hours)" << endl;

cout << "and outputs gross pay " << endl;

cout << "**" << endl << endl;

After all the instructions in printDescription are executed, control returns to main
and the next instruction after the call is executed:

cout << "We hoped you enjoyed this program" << endl;

The first highlighted section of the example is found before main() in what we
call the global section of the program. It is called a prototype and looks just like
the function heading except it has a semicolon at the end. Since our example has
the “definition of the function” after the call to the function, the program will give
us an error when we try to call it if we do not have some kind of signal to the
computer that the definition will be forthcoming. That is the purpose of the pro-
totype. It is a promise (contract if you will) to the compiler that a void function
called printDescription will be defined after the main function. If the
printDescription function is placed in the file before the main function which
calls it, then the prototype is not necessary. However, most C++ programs are writ-
ten with prototypes so that main() can be the first function.

Pass by Value

The following program, Sample Program 6.1b, is an extension of the code above.
This program will take a pay rate and hours worked and produce the gross pay
based on those numbers. This can be done in another function called calPaycheck.

Sample Program 6.1b:

#include <iostream>

using namespace std;

// Function prototypes

void printDescription();

void calPaycheck(float, int);

int main()

{

float payRate;

int hours;

cout << "Welcome to the Payroll Program." << endl;

78 LESSON SET 6.1 Introduction to Void Functions (Procedures)

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 78

printDescription(); // Call to the printDescription function

cout << endl << "Please input the pay per hour." << endl;

cin >> payRate;

cout << endl << "Please input the number of hours worked." << endl;

cin >> hours;

cout << endl << endl;

calPaycheck(payRate, hours); // Call to the calPaycheck function

return 0;

}

//**

// printDescription

//

// Task: This function prints a program description

// Data in: no parameters received from the function call

//

//**

void printDescription() // The function heading

{

cout << "**" << endl << endl;

cout << "This program takes two numbers (pay rate and hours) " << endl;

cout << "and outputs gross pay. " << endl;

cout << "**" << endl << endl;

}

//**

// calPaycheck

//

// Task: This function computes and outputs gross pay

// Data in: rate and time

//

//**

void calPaycheck(float rate, int time)

{

float gross;

gross = rate * time;

cout << "The pay is " << gross << endl;

}

The bold sections of this program show the development of another function.
This function is a bit different in that it has parameters inside the parentheses of
the call, heading and prototype. Recall that parameters are the components
of communication to and from a function and the call to that function. The

Pre-lab Reading Assignment 79

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 79

cout << "We hope you enjoyed this program." << endl;

function calPaycheck needs information from the calling routine. In order to
find the gross pay it needs the rate per hour and the number of hours worked
to be passed to it. The call provides this information by having parameters inside
the parentheses of the call calPaycheck(payRate,hours);. Both payRate and
hours are called actual parameters. They match in a one-to-one correspon-
dence with the parameters in the function heading which are called rate and time:

void calPaycheck(float rate, int time)

The parameters in a function heading are called formal parameters.
It is important to compare the call with the function heading.

Call Function heading
calPaycheck(payRate,hours); void calPaycheck(float rate, int time)

1. The call does not have any word preceding the name whereas the func-
tion heading has the word void preceding its name.

2. The call must NOT give the data type before its actual parameters whereas
the heading MUST give the data type of its formal parameters.

3. Although the formal parameters may have the same name as their corre-
sponding actual parameters, they do not have to be the same. The first
actual parameter, payRate, is paired with rate, the first formal parameter.
This means that the value of payRate is given to rate. The second actual
parameter, hours, is paired with time, the second formal parameter, and
gives time its value. Corresponding (paired) parameters must have the same
data type. Notice that payRate is defined as float in the main function and
thus it can legally match rate which is also defined as float in the function
heading. hours is defined as int so it can be legally matched (paired) with
time which is defined as int in the function heading.

4. The actual parameters (payRate and hours) pass their values to their
corresponding formal parameters. Whatever value is read into payRate in
the main function will be given to rate in the calPaycheck function. This
is called pass by value. It means that payRate and rate are two distinct
memory locations. Whatever value is in payRate at the time of the call will
be placed in rate’s memory location as its initial value. It should be noted
that if the function calPaycheck were to alter the value of rate, it would
not affect the value of payRate back in the main function. In essence, pass
by value is like making a copy of the value in payRate and placing it in
rate. Whatever is done to that copy in rate has no effect on the value in
payRate. Recall that a formal parameter can have the same name as its
corresponding actual parameter; however, they are still two different
locations in memory.

How does the computer know which location to go to if there are two
variables with the same name? The answer is found in a concept called
scope. Scope refers to the location in a program where an indentifier is
accessible. All variables defined in the main function become inactive
when another function is called and are reactivated when the control
returns to main. By the same token, all formal parameters and variables
defined inside a function are active only during the time the function is
executing. What this means is that an actual parameter and its correspond-
ing formal parameter are never active at the same time. Thus there is no
confusion as to which memory location to access even if corresponding

80 LESSON SET 6.1 Introduction to Void Functions (Procedures)

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 80

parameters have the same name. More on scope will be presented in the
next lesson set.

It is also important to compare the prototype with the heading.

Prototype Function heading
void calPaycheck(float, int); void calPaycheck(float rate, int time)

1. The prototype has a semicolon at the end and the heading does not.

2. The prototype lists only the data type of the parameters and not their name.
However, the prototype can list both and thus be exactly like the heading
except for the semicolon. Some instructors tell students to copy the proto-
type without the semicolon and paste it to form the function heading.

Let us look at all three parts—prototype, call and heading:

1. The heading MUST have both data type and name for all its formal
parameters.

2. The prototype must have the data type and can have the name for its
formal parameters.

3. The call MUST have the name but MUST NOT have the data type for its
actual parameters.

Pass by Reference

Suppose we want the calPaycheck function to only compute the gross pay and
then pass this value back to the calling function rather than printing it. We need
another parameter, not to get information from the call but to give information
back to the call. This particular parameter can not be passed by value since
any change made in a function to a pass by value formal parameter has no effect
on its corresponding actual parameter. Instead, this parameter is passed by ref-
erence, which means that the calling function will give the called function the
location of its actual parameter instead of a copy of the value that is stored in that
location. This then allows the called function to go in and change the value of
the actual parameter.

Example: Assume that I have a set of lockers each containing a sheet of paper
with a number on it. Making a copy of a sheet from a particular locker and
giving that sheet to you will ensure that you will not change my original copy.
This is pass by value. On the other hand, if I give you a spare key to a particu-
lar locker, you could go to that locker and change the number on the sheet of
paper located there. This is pass by reference.

How does the program know whether a parameter is passed by value or by
reference? All parameters are passed by value unless they have the character &
listed after the data type, which indicates a pass by reference.

Sample Program 6.1C:

#include <iostream>

#include <iomanip>

using namespace std;

// Function prototypes

Pre-lab Reading Assignment 81

continues

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 81

void printDescription(); // prototype for a parameter-less function

void calPaycheck(float, int, float&); // prototype for a function with 3

// parameters. The first two are passed

// by value. The third is passed by

// reference

int main()

{

float payRate;

float grossPay;

float netPay;

int hours;

cout << "Welcome to the Payroll Program." << endl;

printDescription(); // Call to the description function

cout << endl << "Please input the pay per hour." << endl;

cin >> payRate;

cout << endl << "Please input the number of hours worked." << endl;

cin >> hours;

cout << endl << endl;

calPaycheck(payRate, hours, grossPay); // Call to the calPaycheck function

etPay = grossPay - (grossPay * .20);

cout << "The net pay is " << netPay << endl;

cout << "We hoped you enjoyed this program." << endl;

return 0;

}

//**

// printDescription

//

// Task: This function prints a program description

// Data in: none

// Data out: no actual parameters altered

//

//**

void printDescription() // The function heading

{

cout << "**" << endl << endl;

cout << "This program takes two numbers (pay rate and hours) " << endl;

cout << "and outputs gross pay. " << endl;

cout << "**" << endl << endl;

}

82 LESSON SET 6.1 Introduction to Void Functions (Procedures)

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 82

//**

// calPaycheck

//

// Task: This function computes gross pay

// Data in: rate and time

// Data out: gross (alters the corresponding actual parameter)

//

//**

void calPaycheck(float rate, int time, float& gross)

{

gross = rate * time;

}

Notice that the function calPaycheck now has three parameters. The first two, rate
and time, are passed by value while the third has an & after its data type indi-
cating that it is pass by reference. The actual parameter grossPay is paired with
gross since they both are the third parameter in their respective lists. But since
this pairing is pass by reference, these two names refer to the SAME memory loca-
tion. Thus what the function does to its formal parameter gross changes the val-
ue of grossPay. After the calPaycheck function finds gross, control goes back
to the main function that has this value in grossPay. main proceeds to find the
net pay, by taking 20% off the gross pay, and printing it. Study this latest revision
of the program very carefully. One of the lab exercises asks you to alter it.

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. The word precedes the name of every function proto-
type and heading that does not return a value back to the calling routine.

2. Pass by indicates that a copy of the actual parameter is
placed in the memory location of its corresponding formal parameter.

3. parameters are found in the call to a function.

4. A prototype must give the of its formal
parameters and may give their .

5. A after a data type in the function heading and in the
prototype indicates that the parameter will be passed by reference.

6. Functions that do not return a value are often called in
other programming languages.

7. Pass by indicates that the location of an actual parame-
ter, rather than just a copy of its value, is passed to the called function.

8. A call must have the of its actual parameters and must
NOT have the of those parameters.

9. refers to the region of a program where a variable is
“active.”

10. parameters are found in the function heading.

Pre-lab Writing Assignment 83

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 83

L E S S O N 6 . 1 A

LAB 6.1 Functions with No Parameters

Retrieve program proverb.cpp from the Lab 6.1 folder. The code is as follows:

// This program prints the proverb

// "Now is the time for all good men to come to the aid of their party"

// in a function (procedure) called writeProverb that is called by the main function

//PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

void writeProverb(); //This is the prototype for the writeProverb function

int main()

{

// Fill in the code to call the writeProverb function

return 0;

}

// ***

// writeProverb

//

// task: This function prints a proverb

// data in: none

// data out: no actual parameter altered

//

// **

// Fill in the function heading and the body of the function that will print

// to the screen the proverb listed in the comments at the beginning of the

// program

Exercise 1: Fill in the code (places in bold) so that the program will print out the
proverb listed in the comments at the beginning of the program. The
proverb will be printed by the function which is called by the main func-
tion.

LAB 6.2 Introduction to Pass by Value

Retrieve program newproverb.cpp from the Lab 6.1 folder. The code is as follows:

// This program will allow the user to input from the keyboard

// whether the last word to the following proverb should be party or country:

84 LESSON SET 6.1 Introduction to Void Functions (Procedures)

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 84

// "Now is the time for all good men to come to the aid of their "

// Inputting a 1 will use the word party. Any other number will use the word country.

// PLACE YOUR NAME HERE

#include <iostream>

#include <string>

using namespace std;

// Fill in the prototype of the function writeProverb.

int main ()

{

int wordCode;

cout << "Given the phrase:" << endl;

cout << "Now is the time for all good men to come to the aid of their ___"

<< endl;

cout << "Input a 1 if you want the sentence to be finished with party"

<< endl;

cout << "Input any other number for the word country" << endl;

cout << "Please input your choice now" << endl;

cin >> wordCode;

cout << endl;

writeProverb(wordCode);

return 0;

}

// **

// writeProverb

//

// task: This function prints a proverb. The function takes a number

// from the call. If that number is a 1 it prints "Now is the time

// Otherwise, it prints "Now is the time for all good men

// to come to the aid of their country."

// data in: code for ending word of proverb (integer)

// data out: no actual parameter altered

//

// ***

void writeProverb (int number)

Lesson 6.1A 85

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 85

// for all good men to come to the aid of their party."

{

// Fill in the body of the function to accomplish what is described above

}

Exercise 1: Some people know this proverb as “Now is the time for all good
men to come to the aid of their country” while others heard it as “Now is
the time for all good men to come to the aid of their party.” This program
will allow the user to choose which way they want it printed. Fill in the
blanks of the program to accomplish what is described in the program
comments. What happens if you inadvertently enter a float such as -3.97?

Exercise 2: Change the program so that an input of 1 from the user will print
“party” at the end, a 2 will print “country” and any other number will be
invalid so that the user will need to enter a new choice.

Sample Run:

Given the phrase:
Now is the time for all good men to come to the aid of their __
Input a 1 if you want the sentence to be finished with party
Input a 2 if you want the sentence to be finished with country
Please input your choice now
4
I'm sorry but that is an incorrect choice; Please input a 1 or 2
2
Now is the time for all good men to come to the aid of their country

Exercise 3: Change the previous program so the user may input the word to
end the phrase. The string holding the user’s input word will be passed to the
proverb function instead of passing a number to it. Notice that this change
requires you to change the proverb function heading and the prototype as
well as the call to the function.

Sample Run:

Given the phrase:

Now is the time for all good men to come to the aid of their _____

Please input the word you would like to have finish the proverb

family

Now is the time for all good men to come to the aid of their family

L E S S O N 6 . 1 B

Lab 6.3 Introduction to Pass by Reference

Retrieve program paycheck.cpp from the Lab 6.1 folder. This program is similar
to Sample Program 6.1C that was given in the Pre-lab Reading Assignment. The
code is as follows:

// This program takes two numbers (payRate & hours)

// and multiplies them to get grosspay.

// It then calculates net pay by subtracting 15%

//PLACE YOUR NAME HERE

86 LESSON SET 6.1 Introduction to Void Functions (Procedures)

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 86

#include <iostream>

#include <iomanip>

using namespace std;

//Function prototypes

void printDescription();

void computePaycheck(float, int, float&, float&);

int main()

{

float payRate;

float grossPay;

float netPay;

int hours;

cout << setprecision(2) << fixed;

cout << "Welcome to the Pay Roll Program" << endl;

printDescription(); //Call to Description function

cout << "Please input the pay per hour" << endl;

cin >> payRate;

cout << endl << "Please input the number of hours worked" << endl;

cin >> hours;

cout << endl << endl;

computePaycheck(payRate,hours,grossPay,netPay);

// Fill in the code to output grossPay

cout << "The net pay is $" << netPay << endl;

return 0;

}

// **

// printDescription

//

// task: This function prints a program description

// data in: none

// data out: no actual parameter altered

//

// **

Lesson 6.1B 87

continues

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 87

cout << "We hope you enjoyed this program" << endl;

void printDescription() // The function heading

{

cout << "**" << endl << endl;

cout << "This program takes two numbers (payRate & hours)" << endl;

cout << "and multiplies them to get gross pay " << endl;

cout << "it then calculates net pay by subtracting 15%" << endl;

cout << "**" << endl << endl;

}

// ***

// computePaycheck

//

// task: This function takes rate and time and multiples them to

// get gross pay and then finds net pay by subtracting 15%.

// data in: pay rate and time in hours worked

// data out: the gross and net pay

//

// **

void computePaycheck(float rate, int time, float& gross, float& net)

{

// Fill in the code to find gross pay and net pay

}

Exercise 1: Fill in the code (places in bold) and note that the function

pay. Both gross and net are returned to the main() function where those
values are printed.

Exercise 2: Compile and run your program with the following data and make
sure you get the output shown.

Please input the pay per hour
9.50
Please input the number of hours worked
40

The gross pay is $380
The net pay is $323
We hoped you enjoyed this program

88 LESSON SET 6.1 Introduction to Void Functions (Procedures)

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 88

computePaycheck determines the net pay by subtracting 15% from the gross

Exercise 3: Are the parameters gross and net, in the modified calPaycheck func-
tion you created in Exercise 1 above, pass by value or pass by reference?

Exercise 4: Alter the program so that gross and net are printed in the function

the statement

cout << "We hoped you enjoyed this program" << endl;

after the return from the function calPaycheck.

Exercise 5: Run the program again using the data from Exercise 2. You should
get the same results. All parameters should now be passed by value.

LAB 6.4 Student Generated Code Assignments

Option 1: Write a program that will read two floating point numbers (the first
read into a variable called first and the second read into a variable called
second) and then calls the function swap with the actual parameters first
and second. The swap function having formal parameters number1 and
number2 should swap the value of the two variables. Note: This is similar
to a program you did in Lesson Set 1; however, now you are required to
use a function. You may want to look at logicprob.cpp from Lesson Set 1.

Sample Run:

Enter the first number
Then hit enter
80
Enter the second number
Then hit enter
70

You input the numbers as 80 and 70.
After swapping, the first number has the value of 70 which was the value of the
second number
The second number has the value of 80 which was the value of the first number

Exercise 1: Compile the program and correct it if necessary until you get no
syntax errors.

Exercise 2: Run the program with the sample data above and see if you get the
same results.

Exercise 3: The swap parameters must be passed by .
(Assume that main produces the output.) Why?

Option 2: Write a program that will input miles traveled and hours spent in
travel. The program will determine miles per hour. This calculation must
be done in a function other than main; however, main will print the
calculation. The function will thus have 3 parameters: miles, hours, and
milesPerHour. Which parameter(s) are pass by value and which are
passed by reference? Output is fixed with 2 decimal point precision.

Lesson 6.1B 89

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 89

compute computePaycheck instead of in main(). The main() function executes

90 LESSON SET 6.1 Introduction to Void Functions (Procedures)

Sample Run:

Please input the miles traveled
475
Please input the hours traveled
8
Your speed is 59.38 miles per hour

Option 3: Write a program that will read in grades, the number of which is
also input by the user. The program will find the sum of those grades and
pass it, along with the number of grades, to a function which has a “pass
by reference” parameter that will contain the numeric average of those
grades as processed by the function. The main function will then deter-
mine the letter grade of that average based on a 10-point scale.

90–100 A
80–89 B
70–79 C
60–69 D
0–59 F

Sample Run:

Enter the number of grades
3
Enter a numeric grade between 0-100
90
Enter a numeric grade between 0-100
80
Enter a numeric grade between 0-100
50
The grade is C

LM_Chp6.1.qxd 4/24/03 12:37 PM Page 90

Functions that
Return a Value

PURPOSE 1. To introduce the concept of scope

2. To understand the difference between static, local and global variables

3. To introduce the concept of functions that return a value

4. To introduce the concept of overloading functions

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

3. In the lab, students should complete labs assigned to them by the instructor.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment 20 min. 92

Pre-lab Writing Assignment Pre-lab reading 10 min. 101

LESSON 6.2A

Lab 6.5
Scope of Variables Basic understanding of 15 min. 101

scope rules and
parameter passing

Lab 6.6
Parameters and Local Basic understanding of 35 min. 104
Variables formal and actual

parameters and local
variables

LESSON 6.2B

Lab 6.7
Value Returning and Understanding of value 30 min. 106
Overloading Functions returning functions and

overloaded functions

Lab 6.8
Student Generated Code Basic understanding of 30 min. 110
Assignments pass by reference and

value.

91

L E S S O N S E T

6.2

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 91

P R E - L A B R E A D I N G A S S I G N M E N T

Scope

As mentioned in Lesson Set 6.1, the scope of an identifier (variable, constant, func-
tion, etc.) is an indication of where it can be accessed in a program. There can
be certain portions of a program where a variable or other identifier can not be
accessed for use. Such areas are considered out of the scope for that particular
identifier. The header (the portion of the program before main) has often been
referred to as the global section. Any identifier defined or declared in this area
is said to have global scope, meaning it can be accessed at any time during the
execution of the program. Any identifier defined outside the bounds of all the func-
tions have global scope. Although most constants and all functions are defined
globally, variables should almost never be defined in this manner.

Local scope refers to identifiers defined within a block. They are active only
within the bounds of that particular block. In C++ a block begins with a left
brace { and ends with a right brace }. Since all functions (including main) begin
and end with a pair of braces, the body of a function is a block. Variables defined
within functions are called local variables (as opposed to global variables
which have global scope). Local variables can normally be accessed anywhere
within the function from the point where they are defined. However, blocks can
be defined within other blocks, and the scope of an identifier defined in such an
inner block would be limited to that inner block. A function’s formal parameters
(Lesson Set 6.1) have the same scope as local variables defined in the outmost
block of the function. This means that the scope of a formal parameter is the entire
function. The following sample program illustrates some of these scope rules.

Sample Program 6.2a:

#include <iostream>

using namespace std;

const PI = 3.14;

void printHeading();

int main()

{

float circle;

cout << "circle has local scope that extends the entire main function"

<< endl;

{

float square;

cout << "square has local scope active for only a portion of main."

<< endl;

cout << "Both square and circle can be accessed here "

<< "as well as the global constant PI." << endl;

}

92 LESSON SET 6.2 Functions that Return a Value

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 92

cout << "circle is active here, but square is not." << endl;

printHeading();

return 0;

}

void printHeading()

{

int triangle;

cout << "The global constant PI is active here "

<< "as well as the local variable triangle." << endl;

}

Notice that the nested braces within the outer braces of main()indicate another
block in which square is defined. square is active only within the bounds of the
inner braces while circle is active for the entire main function. Neither of these
are active when the function printHeading is called. triangle is a local variable
of the function printHeading and is active only when that function is active. PI,
being a global identifier, is active everywhere.

Formal parameters (Lesson Set 6.1) have the same scope as local variables
defined in the outmost block of the function. That means that the scope of for-
mal parameters of a function is the entire function. The question may arise about
variables with the same name. For example, could a local variable in the func-
tion printHeading of the above example have the name circle? The answer is
yes, but it would be a different memory location than the one defined in the
main function. There are rules of name precedence which determine which
memory location is active among a group of two or more variables with the
same name. The most recently defined variable has precedence over any other
variable with the same name. In the above example, if circle had been defined
in the printHeading function, then the memory location assigned with that def-
inition would take precedence over the location defined in main() as long as the
function printHeading was active.

Lifetime is similar but not exactly the same as scope. It refers to the time dur-
ing a program that an identifier has storage assigned to it.

Scope Rules

1. The scope of a global identifier, any identifier declared or defined outside
all functions, is the entire program.

2. Functions are defined globally. That means any function can call any other
function at any time.

3. The scope of a local identifier is from the point of its definition to the end
of the block in which it is defined. This includes any nested blocks that
may be contained within, unless the nested block has a variable defined in
it with the same name.

4. The scope of formal parameters is the same as the scope of local variables
defined at the beginning of the function.

Pre-lab Reading Assignment 93

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 93

Why are variables almost never defined globally? Good structured programming
assures that all communication between functions will be explicit through the use
of parameters. Global variables can be changed by any function. In large projects,
where more than one programmer may be working on the same program, glob-
al variables are unreliable since their values can be changed by any function or
any programmer. The inadvertent changing of global variables in a particular
function can cause unwanted side effects.

Static Local Variables

One of the biggest advantages of a function is the fact that it can be called mul-
tiple times to perform a job. This saves programming time and memory space.
The values of local variables do not remain between multiple function calls.
What this means is that the value assigned to a local variable of a function is lost
once the function is finished executing. If the same function is called again that
value will not necessarily be present for the local variable. Local variables start
“fresh,” in terms of their value, each time the function is called. There may be times
when a function needs to retain the value of a variable between calls. This can
be done by defining the variable to be static, which means it is initialized at
most once and its memory space is retained even after the function in which it
is defined has finished executing. Thus the lifetime of a static variable is differ-
ent than a normal local variable. Static variables are defined by placing the word
static before the data type and name of the variable as shown below.

static int totalPay = 0;

static float interestRate;

Default Arguments

Actual parameters (parameters used in the call to a function) are often called
arguments. Normally the number of actual parameters or arguments must equal
the number of formal parameters, and it is good programming practice to use this
one-to-one correspondence between actual and formal parameters. It is possible,
however, to assign default values to all formal parameters so that the calling
instruction does not have to pass values for all the arguments. Although these
default values can be specified in the function heading, they are usually defined
in the prototype. Certain actual parameters can be left out; however, if an actu-
al parameter is left out, then all the following parameters must also be left out.
For this reason, pass by reference arguments should be placed first (since by
their very nature they must be included in the call).

Sample Program 6.2b:

#include <iostream>

#include <iomanip>

using namespace std;

void calNetPay(float& net, int hours=40, float rate=6.00);

// function prototype with default arguments specified

int main()

{

94 LESSON SET 6.2 Functions that Return a Value

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 94

int hoursWorked = 20;

float payRate = 5.00;

float pay; // net pay calculated by the calNetPay function

cout << setprecision(2) << fixed << showpoint;

calNetPay(pay); // call to the function with only 1 parameter

cout << "The net pay is $" << pay << endl;

return 0;

}

//

**

// calNetPay

//

// task: This function takes rate and hours and multiples them to

// get net pay (no deductions in this pay check!!!). It has two

// default parameters. If the third argument is missing from the

// call, 6.00 will be passed as the rate to this function. If the

// second and third arguments are missing from the call, 40 will be

// passed as the hours and 6.00 will be passed as the rate.

//

// data in: pay rate and time in hours worked

// data out: net pay (alters the corresponding actual parameter)

//

//

**

void calNetPay(float& net, int hours, float rate)

{

net = hours * rate;

}

What will happen if pay is not listed in the calling instruction? An error will occur
stating that the function can not take 0 arguments. The reason for this is that the
net formal parameter does not have a default value and so the call must have at
least one argument. In general there must be as many actual arguments as for-
mal parameters that do not have default values. Of course some or all default val-
ues can be overridden.

The following calls are all legal in the example program. Fill in the values that
the calNetpay function receives for hours and rate in each case. Also fill in the
value that you expect net pay to have for each call.

calNetPay(pay); The net pay is $

calNetPay receives the value of for hours and for rate.

Pre-lab Reading Assignment 95

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 95

calNetPay(pay,hoursWorked); The net pay is $

calNetPay receives the value of for hours and for rate.

calNetPay(pay, hoursWorked, payRate); The net pay is $

calNetPay receives the value of for hours and for rate.

The following are not correct. List what you think causes the error in each case.

calNetPay(pay, payRate);

calNetPay(hoursWorked, payRate);

calNetPay(payRate);

calNetPay();

Functions that Return a Value

The functions discussed in the previous lesson set are not “true functions” because
they do not return a value to the calling function. They are often referred to as
procedures in computer science jargon. True functions, or value returning func-
tions, are modules that return exactly one value to the calling routine. In C++ they
do this with a return statement. This is illustrated by the cubeIt function shown
in sample program 6.2c.

Sample Program 6.2c:

#include <iostream>

using namespace std;

int cubeIt(int x); // prototype for a user defined function

// that returns the cube of the value passed

// to it.

int main()

{

int x = 2;

int cube;

cube = cubeIt(x); // This is the call to the cubeIt function.

cout << "The cube of " << x << " is " << cube << endl;

return 0;

}

//**

// cubeIt

//

// task: This function takes a value and returns its cube

// data in: some value x

// data returned: the cube of x

//

//**

int cubeIt(int x) // Notice that the function type is int

// rather than void

{

96 LESSON SET 6.2 Functions that Return a Value

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 96

int num;

num = x * x * x;

return num;

}

The function cubeIt receives the value of x, which in this case is 2, and finds its
cube which is placed in the local variable num. The function then returns the val-

function call and is assigned to cube. That is, cube = cubeIt(x) is replaced with
cube = 8. It is not actually necessary to place the value to be returned in a local
variable before returning it. The entire cubeIt function could be written as follows:

int cubeIt(int x)

{

return x * x * x;

}

For value returning functions we replace the word void with the data type
of the value that is returned. Since these functions return one value, there should
be no effect on any parameters that are passed from the call. This means that all
parameters of value returning functions should be pass by value, NOT pass by
reference. Nothing in C++ prevents the programmer from using pass by reference
in value returning functions; however, they should not be used.

The calNetPay program (Sample Program 6.2b) has a module that calcu-
lates the net pay when given the hours worked and the hourly pay rate. Since it
calculates only one value that is needed by the call, it can easily be implement-
ed as a value returning function, instead of by having pay passed by reference.

Sample program 6.2d, which follows, modifies Program 6.2b in this manner.

Sample Program 6.2d:

#include <iostream>

#include <iomanip>

using namespace std;

float calNetPay(int hours, float rate);

int main()

{

int hoursWorked = 20;

float payRate = 5.00;

float netPay;

cout << setprecision(2) << fixed << showpoint;

netPay = calNetPay(hoursWorked, payRate);

cout << " The net pay is $" << netPay << endl;

return 0;

}

Pre-lab Reading Assignment 97

continues

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 97

ue stored in num to the function call cubeIt(x). The value 8 replaces the entire

//**

// calNetPay

//

// task: This function takes hours worked and pay rate and multiplies

// them to get the net pay which is returned to the calling function.

//

// data in: hours worked and pay rate

// data returned: net pay

//

//**

float calNetPay(int hours, float rate)

{

return hours * rate;

}

Notice how this function is called.

paynet = calNetPay (hoursWorked, payRate);

This call to the function is not a stand-alone statement, but rather part of an
assignment statement. The call is used in an expression. In fact, the function will
return a floating value that replaces the entire right-hand side of the assignment
statement. This is the first major difference between the two types of functions
(void functions and value returning functions). A void function is called by just
listing the name of the function along with its arguments. A value returning func-
tion is called within a portion of some fundamental instruction (the right-hand side
of an assignment statement, condition of a selection or loop statement, or argu-
ment of a cout statement). As mentioned earlier, another difference is that in
both the prototype and function heading the word void is replaced with the
data type of the value that is returned. A third difference is the fact that a value
returning function MUST have a return statement. It is usually the very last
instruction of the function. The following is a comparison between the imple-
mentation as a procedure (void function) and as a value returning function.

Value Returning Function Procedure

PROTOTYPE float calNetPay (int hours, void calNetPay (float& net,
float rate); int hours, float rate);

CALL netpay=calNetPay (hoursWorked, calNetPay (pay, hoursWorked,
payRate); payRate);

HEADING float calNetPay (int hours, void calNetPay (float& net,
float rate) int hours, float rate)

BODY { {
return hours * rate; net = hours * rate;

} }

Functions can also return a Boolean data type to test whether a certain condition
exists (true) or not (false).

98 LESSON SET 6.2 Functions that Return a Value

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 98

Overloading Functions

Uniqueness of identifier names is a vital concept in programming languages.
The convention in C++ is that every variable, function, constant, etc. name with
the same scope needs to be unique. However, there is an exception. Two or
more functions may have the same name as long as their parameters differ in quan-
tity or data type. For example, a programmer could have two functions with the
same name that do the exact same thing to variables of different data types.

Example: Look at the following prototypes of functions. All have the same
name, yet all can be included in the same program because each one differs
from the others either by the number of parameters or the data types of the
parameters.

int add(int a, int b, int c);

int add(int a, int b);

float add(float a, float b, float c);

float add(float a, float b);

When the add function is called, the actual parameter list of the call is used to deter-
mine which add function to call.

Stubs and Drivers

Many IDEs (Integrated Development Environments) have software debuggers
which are used to help locate logic errors; however, programmers often use
the concept of stubs and drivers to test and debug programs that use functions
and procedures. A stub is nothing more than a dummy function that is called
instead of the actual function. It usually does little more than write a message
to the screen indicating that it was called with certain arguments. In structured
design, the programmer often wants to delay the implementation of certain
details until the overall design of the program is complete. The use of stubs
makes this possible.

Sample Program 6.2e:

#include <iostream>

using namespace std;

int findSqrRoot(int x); // prototype for a user defined function that

// returns the square root of the number passed to it

int main()

{

int number;

cout << "Input the number whose square root you want." << endl;

cout << "Input a -99 when you would like to quit." << endl;

cin >> number;

while (number != -99)

{

Pre-lab Reading Assignment 99

continues

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 99

cout << "The square root of your number is "

<< findSqrRoot(number) << endl;

cout << "Input the number whose square root you want." << endl;

cout << "Input a -99 when you would like to quit." << endl;

cin >> number;

}

return 0;

}

int findSqrRoot(int x)

{

cout << "findSqrRoot function was called with " << x

<< " as its argument\n";

return 0;

} // This bold section is the stub.

This example shows that the programmer can test the execution of main and the call to the
function without having yet written the function to find the square root. This allows the pro-
grammer to concentrate on one component of the program at a time. Although a stub is not
really needed in this simple program, stubs are very useful for larger programs.

A driver is a module that tests a function by simply calling it. While one programmer
may be working on the main function, another programmer may be developing the code
for a particular function. In this case the programmer is not so concerned with the calling
of the function but rather with the body of the function itself. In such a case a driver (call
to the function) can be used just to see if the function performs properly.

Sample Program 6.2f:

#include <iostream>

#include <cmath>

using namespace std;

int findSqrRoot(int x); // prototype for a user defined function that

// returns the square root of the number passed to it

int main()

{

int number;

cout << "Calling findSqrRoot function with a 4" << endl;

cout << "The result is " << findSqrRoot(4) << endl;

return 0;

}

int findSqrRoot(int x)

{

return sqrt(x);

}

In this example, the main function is used solely as a tool (driver) to call the
findSqrRoot function to see if it performs properly.

100 LESSON SET 6.2 Functions that Return a Value

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 100

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. Variables of a function that retain their value over multiple calls to the
function are called variables.

2. In C++ all functions have scope.

3. Default arguments are usually defined in the of the
function.

4. A function returning a value should never use pass by
parameters.

5. Every function that begins with a data type in the heading, rather than the
word void, must have a(n) statement somewhere,
usually at the end, in its body of instructions.

6 A(n) is a program that tests a function by simply calling it.

7. In C++ a block boundary is defined with a pair of .

8. A(n) is a dummy function that just indicates that a
function was called properly.

9. Default values are generally not given for pass by
parameters.

10. functions are functions that have the same name but a
different parameter list.

L E S S O N 6 . 2 A

LAB 6.5 Scope of Variables

Retrieve program scope.cpp from the Lab 6.2 folder. The code is as follows:

#include <iostream>

#include <iomanip>

using namespace std;

// This program will demonstrate the scope rules.

// PLACE YOUR NAME HERE

const double PI = 3.14;

const double RATE = 0.25;

void findArea(float, float&);

void findCircumference(float, float&);

int main()

{

Pre-Lab Writing Assignment 101

continues

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 101

cout << fixed << showpoint << setprecision(2);

float radius = 12;

cout <<" Main function outer block" << endl;

cout <<" LIST THE IDENTIFIERS THAT are active here" << endl << endl;

{

float area;

cout << "Main function first inner block" << endl;

cout << "LIST THE IDENTIFIERS THAT are active here" << endl << endl;

// Fill in the code to call findArea here

cout << "The radius = " << radius << endl;

cout << "The area = " << area << endl << endl;

}

{

float radius = 10;

float circumference;

cout << "Main function second inner block" << endl;

cout << "LIST THE IDENTIFIERS THAT are active here" << endl << endl;

// Fill in the code to call findCircumference here

cout << "The radius = " << radius << endl;

cout << "The circumference = " << circumference << endl << endl;

}

cout << "Main function after all the calls" << endl;

cout << "LIST THE IDENTIFIERS THAT are active here" << endl << endl;

return 0;

}

// ***

// findArea

//

// task: This function finds the area of a circle given its radius

// data in: radius of a circle

// data out: answer (which alters the corresponding actual parameter)

//

// **

void findArea(float rad, float& answer)

{

cout << "AREA FUNCTION" << endl << endl;

cout << "LIST THE IDENTIFIERS THAT are active here"<< endl << endl;

102 LESSON SET 6.2 Functions that Return a Value

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 102

// FILL in the code, given that parameter rad contains the radius, that

// will find the area to be stored in answer

}

// **

// findCircumference

//

// task: This function finds the circumference of a circle given its radius

// data in: radius of a circle

// data out: distance (which alters the corresponding actual parameter)

//

// ***

void findCircumference(float length, float& distance)

{

cout << "CIRCUMFERENCE FUNCTION" << endl << endl;

cout << "LIST THE IDENTIFIERS THAT are active here" << endl << endl;

// FILL in the code, given that parameter length contains the radius,

// that will find the circumference to be stored in distance

}

Exercise 1: Fill in the following chart by listing the identifiers (function names,
variables, constants)

GLOBAL Main Main Main Area Circum-
(inner 1) (inner 2) ference

Exercise 2: For each cout instruction that reads:

cout << " LIST THE IDENTIFIERS THAT are active here" << endl;

Replace the words in all caps by a list of all identifiers active at that
location. Change it to have the following form:

cout << "area, radius and PI are active here" << endl;

Exercise 3: For each comment in bold, place the proper code to do what it
says.

NOTE: area = π r2

circumference = 2πr

Lesson 6.2A 103

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 103

Exercise 4: Before compiling and running the program, write out what you
expect the output to be.

What value for radius will be passed by main (first inner block) to the
findArea function?

What value for radius will be passed by main function (second inner
block) to the findCircumference function?

Exercise 5: Compile and run your program. Your instructor may ask to see the
program run or obtain a hard copy.

LAB 6.6 Parameters and Local Variables

Retrieve program money.cpp from the Lab 6.2 folder. The code is as follows:

#include <iostream>

#include <iomanip>

using namespace std;

// PLACE YOUR NAME HERE

void normalizeMoney(float& dollars, int cents = 150);

// This function takes cents as an integer and converts it to dollars

// and cents. The default value for cents is 150 which is converted

// to 1.50 and stored in dollars

int main()

{

int cents;

float dollars;

cout << setprecision(2) << fixed << showpoint;

cents = 95;

cout << "\n We will now add 95 cents to our dollar total\n";

// Fill in the code to call normalizeMoney to add 95 cents

cout << "Converting cents to dollars resulted in " << dollars << " dollars\n";

cout << "\n We will now add 193 cents to our dollar total\n";

// Fill in the code to call normalizeMoney to add 193 cents

cout << "Converting cents to dollars resulted in " << dollars << " dollars\n";

cout << "\n We will now add the default value to our dollar total\n";

// Fill in the code to call normalizeMoney to add the default value of cents

cout << "Converting cents to dollars resulted in " << dollars << " dollars\n";

104 LESSON SET 6.2 Functions that Return a Value

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 104

return 0;

}

//

// normalizeMoney

//

// task: This function is given a value in cents. It will convert cents

// to dollars and cents which is stored in a local variable called

// total which is sent back to the calling function through the

// parameter dollars. It will keep a running total of all the money

// processed in a local static variable called sum.

//

// data in: cents which is an integer

// data out: dollars (which alters the corresponding actual parameter)

//

//

void normalizeMoney(float& dollars, int cents)

{

float total=0;

// Fill in the definition of sum as a static local variable

sum = 0.0;

// Fill in the code to convert cents to dollars

total = total + dollars;

sum = sum + dollars;

cout << "We have added another $" << dollars <<" to our total" << endl;

cout << "Our total so far is $" << sum << endl;

cout << "The value of our local variable total is $" << total << endl;

}

Exercise 1: You will notice that the function has to be completed. This function
will take cents and convert it to dollars. It also keeps a running total of
all the money it has processed. Assuming that the function is complete,
write out what you expect the program will print.

Exercise 2: Complete the function. Fill in the blank space to define sum and
then write the code to convert cents to dollars. Example: 789 cents
would convert to 7.89. Compile and run the program to get the expected
results. Think about how sum should be defined.

Lesson 6.2A 105

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 105

L E S S O N 6 . 2 B

LAB 6.7 Value Returning and Overloading Functions

Retrieve program convertmoney.cpp from the Lab 6.2 folder. The code is as follows:

#include <iostream>

#include <iomanip>

using namespace std;

// This program will input American money and convert it to foreign currency

// PLACE YOUR NAME HERE

// Prototypes of the functions

void convertMulti(float dollars, float& euros, float& pesos);

void convertMulti(float dollars, float& euros, float& pesos, float& yen);

float convertToYen(float dollars);

float convertToEuros(float dollars);

float convertToPesos(float dollars);

int main ()

{

float dollars;

float euros;

float pesos;

float yen;

cout << fixed << showpoint << setprecision(2);

cout << "Please input the amount of American Dollars you want converted "

<< endl;

cout << "to euros and pesos" << endl;

cin >> dollars;

// Fill in the code to call convertMulti with parameters dollars, euros, and pesos

// Fill in the code to output the value of those dollars converted to both euros

// and pesos

cout << "Please input the amount of American Dollars you want converted\n";

cout << "to euros, pesos and yen" << endl;

cin >> dollars;

// Fill in the code to call convertMulti with parameters dollars, euros, pesos and yen

// Fill in the code to output the value of those dollars converted to euros,

// pesos and yen

106 LESSON SET 6.2 Functions that Return a Value

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 106

cout << "Please input the amount of American Dollars you want converted\n";

cout << "to yen" <<endl;

cin >> dollars;

// Fill in the code to call convertToYen

// Fill in the code to output the value of those dollars converted to yen

cout << "Please input the amount of American Dollars you want converted\n";

cout << " to euros" << endl;

cin >> dollars;

// Fill in the code to call convert ToEuros

// Fill in the code to output the value of those dollars converted to euros

cout << "Please input the amount of American Dollars you want converted\n";

cout << " to pesos " << endl;

cin >> dollars;

// Fill in the code to call convertToPesos

// Fill in the code to output the value of those dollars converted to pesos

return 0;

}

// All of the functions are stubs that just serve to test the functions

// Replace with code that will cause the functions to execute properly

// **

// convertMulti

//

// task: This function takes a dollar value and converts it to euros

// and pesos

// data in: dollars

// data out: euros and pesos

//

// ***

void convertMulti(float dollars, float& euros, float& pesos)

{

cout << "The function convertMulti with dollars, euros and pesos "

<< endl <<" was called with " << dollars <<" dollars” << endl << endl;

}

Lesson 6.2B 107

continues

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 107

// **

// convertMulti

//

// task: This function takes a dollar value and converts it to euros

// pesos and yen

// data in: dollars

// data out: euros pesos yen

//

// ***

void convertMulti(float dollars, float& euros, float& pesos, float& yen)

{

cout << "The function convertMulti with dollars, euros, pesos and yen"

<< endl << " was called with " << dollars << " dollars" << endl << endl;

}

// **

// convertToYen

//

// task: This function takes a dollar value and converts it to yen

// data in: dollars

// data returned: yen

//

// ***

float convertToYen(float dollars)

{

cout << "The function convertToYen was called with " << dollars <<" dollars"

<< endl << endl;

return 0;

}

// **

// convertToEuros

//

// task: This function takes a dollar value and converts it to euros

// data in: dollars

// data returned: euros

//

// ***

108 LESSON SET 6.2 Functions that Return a Value

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 108

float convertToEuros(float dollars)

{

cout << "The function convertToEuros was called with " << dollars

<< " dollars" << endl << endl;

return 0;

}

// ***

// convertToPesos

//

// task: This function takes a dollar value and converts it to pesos

// data in: dollars

// data returned: pesos

//

// **

float convertToPesos(float dollars)

{

cout << "The function convertToPesos was called with " << dollars

<< " dollars" << endl;

return 0;

}

Exercise 1: Run this program and observe the results. You can input anything
that you like for the dollars to be converted. Notice that it has stubs as
well as overloaded functions. Study the stubs carefully. Notice that in this
case the value returning functions always return 0.

Exercise 2: Complete the program by turning all the stubs into workable
functions. Be sure to call true functions differently than procedures. Make
sure that functions return the converted dollars into the proper currency.
Although the exchange rates vary from day to day, use the following
conversion chart for the program. These values should be defined as
constants in the global section so that any change in the exchange rate can
be made there and nowhere else in the program.

One Dollar = 1.06 euros
9.73 pesos
124.35 yen

Sample Run:

Please input the amount of American Dollars you want converted to euros and pesos
9.35

$9.35 is converted to 9.91 euros and 90.98 pesos

Please input the amount of American Dollars you want converted to euros and
pesos and yen
10.67

Lesson 6.2B 109

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 109

$10.67 is converted to 11.31 euros, 103.82 pesos, and 1326.81 yen

Please input the amount of American Dollars you want converted to yen
12.78
$12.78 is converted to 1589.19 yen

Please input the amount of American Dollars you want converted to euros
2.45
$2.45 is converted to 2.60 euros

Please input the amount of American Dollars you want converted to pesos
8.75
$8.75 is converted to 85.14 pesos

LAB 6.8 Student Generated Code Assignments

Option 1: Write a program that will convert miles to kilometers and kilometers
to miles. The user will indicate both a number (representing a distance)
and a choice of whether that number is in miles to be converted to kilo-
meters or kilometers to be converted to miles. Each conversion is done
with a value returning function. You may use the following conversions.

1 kilometer = .621 miles
1 mile = 1.61 kilometers

Sample Run:

Please input
1 Convert miles to kilometers
2 Convert kilometers to miles
3 Quit

1
Please input the miles to be converted
120
120 miles = 193.2 kilometers

Please input
1 Convert miles to kilometers
2 Convert kilometers to miles
3 Quit
2
Please input the kilometers to be converted
235
235 kilometers = 145.935 miles

Please input
1 Convert miles to kilometers
2 Convert kilometers to miles
3 Quit
3

Option 2: Write a program that will input the number of wins and losses that a
baseball team acquired during a complete season. The wins should be
input in a parameter-less value returning function that returns the wins to

110 LESSON SET 6.2 Functions that Return a Value

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 110

the main function. A similar function should do the same thing for the
losses. A third value returning function calculates the percentage of wins.
It receives the wins and losses as parameters and returns the percentage
(float) to the main program which then prints the result. The percentage
should be printed as a percent to two decimal places.

Sample Run:

Please input the number of wins
80
Please input the number of losses
40
The percentage of wins is 66.67%

Option 3: Write a program that outputs a dentist bill. For members of a dental
plan, the bill consists of the service charge (for the particular procedure
performed) and test fees, input to the program by the user. To non-
members the charges consist of the above services plus medicine (also
input by the user). The program first asks if the patient is a member of the
dental plan. The program uses two overloaded functions to calculate the
total bill. Both are value returning functions that return the total charge.

Sample Run 1:

Please input a one if you are a member of the dental plan
Input any other number if you are not
1
Please input the service charge
7.89
Please input the test charges
89.56
The total bill is $97.45

Sample Run 2:

Please input a one if you are a member of the dental plan
Input any other number if you are not
2
Please input the service charge
75.84
Please input the test charges
49.78
Please input the medicine charges
40.22
The total bill is $165.84

Lesson 6.2B 111

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 111

LM_Chp6.2.qxd 4/24/03 12:39 PM Page 112

L E S S O N S E T

Arrays

PURPOSE 1. To introduce and allow students to work with arrays

2. To introduce the typedef statement

3. To work with and manipulate multidimensional arrays

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

3. In the lab, students should complete labs assigned to them by the instructor.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment 20 min. 114

Pre-lab Writing Assignment Pre-lab reading 10 min. 122

LESSON 7A

Lab 7.1
Working with One- Basic understanding of 30 min. 123
Dimensional Arrays one-dimensional arrays

Lab 7.2
Strings as Arrays of Basic understanding of 20 min. 126
Characters arrays of characters

LESSON 7B

Lab 7.3
Working with Two- Understanding of multi- 30 min. 129
Dimensional Arrays dimensional arrays

Lab 7.4
Student Generated Code Basic understanding 30 min. 134
Assignments of arrays

7

113

LM_Chp7.qxd 4/24/03 12:40 PM Page 113

P R E - L A B R E A D I N G A S S I G N M E N T

One-Dimensional Arrays

So far we have talked about a variable as a single location in the computer’s
memory. It is possible to have a collection of memory locations, all of which
have the same data type, grouped together under one name. Such a collection
is called an array. Like every variable, an array must be defined so that the com-
puter can “reserve” the appropriate amount of memory. This amount is based upon
the type of data to be stored and the number of locations, i.e., size of the array,
each of which is given in the definition.

Example: Given a list of ages (from a file or input from the keyboard), find
and display the number of people for each age.

The programmer does not know the ages to be read but needs a space for the
total number of occurrences of each “legitimate age.” Assuming that ages 1,
2, . . . , 100 are possible, the following array definition can be used.

const int TOTALYEARS = 100;

int main()

{

int ageFrequency[TOTALYEARS]; //reserves memory for 100 ints

:

return 0;

}

Following the rules of variable definition, the data type (integer in this case) is
given first, followed by the name of the array (ageFrequency), and then the total
number of memory locations enclosed in brackets. The number of memory loca-
tions must be an integer expression greater than zero and can be given either as
a named constant (as shown in the above example) or as a literal constant (an
actual number such as 100).

Each element of an array, consisting of a particular memory location within
the group, is accessed by giving the name of the array and a position with the array
(subscript). In C++ the subscript, sometimes referred to as index, is enclosed in
square brackets. The numbering of the subscripts always begins at 0 and ends with
one less than the total number of locations. Thus the elements in the ageFrequency
array defined above are referenced as ageFrequency[0] through ageFrequency[99].

If in our example we want ages from 1 to 100, the number of occurrences of
age 4 will be placed in subscript 3 since it is the “fourth” location in the array.
This odd way of numbering is often confusing to new programmers; however, it
quickly becomes routine.1

114 LESSON SET 7 Arrays

1 Some students actually add one more location and then ignore location 0, letting 1 be the
first location. In the above example such a process would use the following definition: int
agefrequency[101]; and use only the subscripts 1 through 100. Our examples will use
location 0. Your instructor will tell you which method to use.

0 1 2 3 4 5 97 98 99

LM_Chp7.qxd 4/24/03 12:40 PM Page 114

Array Initialization

In our example, ageFrequency[0] keeps a count of how many 1s we read in,
ageFrequency[1] keeps count of how many 2s we read in, etc. Thus, keeping
track of how many people of a particular age exist in the data read in requires
reading each age and then adding one to the location holding the count for that
age. Of course it is important that all the counters start at 0. The following shows
the initialization of all the elements of our sample array to 0.

for (int pos = 0; pos < TOTALYEARS; pos++)

// pos acts as the array subscript

{

ageFrequency[pos] = 0;

}

A simple for loop will process the entire array, adding one to the subscript each
time through the loop. Notice that the subscript (pos) starts with 0. Why is the con-
dition pos < TOTALYEARS used instead of pos <= TOTALYEARS? Remember that
the last subscript is one less than the total number of elements in the array.
Hence the subscripts of this array go from 0 to 99.

Array Processing

Arrays are generally processed inside loops so that the input/output processing
of each element of the array can be performed with minimal statements. Our
age frequency program first needs to read in the ages from a file or from the key-
board. For each age read in, the “appropriate” element of the array (the one cor-
responding to that age) needs to be incremented by one. The following examples
show how this can be accomplished:

from a file using infile as a logical name from a keyboard with –99 as sentinel data
cout << "Please input an age from one"

<< "to 100. input -99 to stop"

<< endl;

infile >> currentAge; cin >> currentAge;

while (infile)

while (currentAge != -99)

{ {

ageFrequency[currentAge-1] = ageFrequency[currentAge-1] =

ageFrequency[currentAge-1] + 1; ageFrequency[currentAge-1] + 1;

infile >> currentAge; cout << "Please input an age from "

<< "one to 100. input -99 to stop"

<< endl;

cin >> currentAge;

} }

The while(infile) statement means that while there is more data in the file
infile, the loop will continue to process.

To read from a file or from the keyboard we prime the read,2 which means
the first value is read in before the test condition is checked to see if the loop

Pre-lab Reading Assignment 115

2 Priming the read for a while loop means having an input just before the loop condition
(just before the while) and having another one as the last statement in the loop.

LM_Chp7.qxd 4/24/03 12:40 PM Page 115

should be executed. When we read an age, we increment the location in the
array that keeps track of the amount of people in the corresponding age group.
Since C++ array indices always start with 0, that location will be at the subscript
one value less than the age we read in.

Each element of the array contains the number of people of a given age. The data
shown here is from a random sample run. In writing the information stored in the
array, we want to make sure that only those array elements that have values
greater than 0 are output. The following code will do this.

for (int ageCounter = 0; ageCounter < TOTALYEARS; ageCounter++)

if (ageFrequency[ageCounter] > 0)

cout << "The number of people " << ageCounter + 1 <<" years old is "

<< ageFrequency[ageCounter] << endl;

The for loop goes from 0 to one less than TOTALYEARS (0 to 99). This will test every
element of the array. If a given element has a value greater than 0, it will be
output. What does outputting ageCounter + 1 do? It gives the age we are deal-
ing with at any given time, while the value of ageFrequency[ageCounter] gives
the number of people in that age group.

The complete age frequency program will be given as one of the lab assign-
ments in Lab 7.4.

Arrays as Arguments

Arrays can be passed as arguments (parameters) to functions. Although variables
can be passed by value or reference, arrays are always passed by pointer, which
is similar to pass by reference, since it is not efficient to make a “copy” of all ele-
ments of the array. Pass by pointer is discussed further in Lesson Set 9. This
means that arrays, like pass by reference parameters, can be altered by the call-
ing function. However, they NEVER have the & symbol between the data type and
name, as pass by reference parameters do. Sample Program 7.1 illustrates how
arrays are passed as arguments to functions.

Sample Program 7.1:

// The grade average program

// This program illustrates how one-dimensional arrays are used and how

// they are passed as arguments to functions. It contains two functions.

// The first function is called to allow the user to input a set of grades and

// store them in an array. The second function is called to find the average

// grade.

#include <iostream>

using namespace std;

116 LESSON SET 7 Arrays

04 0 14 5 0 6 1

990 1 2 3 4 5 98
100 years1 year 2 years 3 years 4 years 5 years 6 years 99 years

LM_Chp7.qxd 4/24/03 12:40 PM Page 116

const int TOTALGRADES = 50; // TOTALGRADES is the maximum size of the array

// function prototypes

void getData(int array[], int& sizeOfArray);

// the procedure that will read values into the array

float findAverage(const int array[], int sizeOfArray);

// the procedure that will find the average of values

// stored in an array. The word const in front of the

// data type of the array prevents the function from

// altering the array

int main()

{

int grades[TOTALGRADES]; // defines an array that holds up to 50 ints

int numberOfGrades = 0; // the number of grades read in

float average; // the average of all grades read in

getData(grades, numberOfGrades); // getData is called to read the grades into

// the array and store how many grades there

// are in numberOfGrades

average = findAverage(grades, numberOfGrades);

cout << endl << "The average of the " << numberOfGrades

<< " grades read in is " << average << "." << endl << endl;

return 0;

}

//***

// getData

//

// task: This function inputs and stores data in the grades array.

// data in: none (the parameters contain no information needed by the

// getData function)

// data out: an array containing grades and the number of grades

//***

void getData(int array[], int& sizeOfArray)

{

int pos = 0; // array index which starts at 0

int grade; // holds each individual grade read in

cout << "Please input a grade or type -99 to stop: " << endl;

cin >> grade;

Pre-lab Reading Assignment 117

continues

LM_Chp7.qxd 4/24/03 12:40 PM Page 117

while (grade != -99)

{

array[pos] = grade; // store grade read in to next array location

pos ++; // increment array index

cout << "Please input a grade or type -99 to stop: " << endl;

cin >> grade;

}

sizeOfArray = pos; // upon exiting the loop, pos holds the

// number of grades read in, which is sent

// back to the calling function

}

//**

// findAverage

//

// task: This function finds and returns the average of the values

//

// data in: the array containing grades and the array size

// data returned: the average of the grades contained in that array

//**

float findAverage (const int array[], int sizeOfArray)

{

int sum = 0; // holds the sum of all grades in the array

for (int pos = 0; pos < sizeOfArray; pos++)

{

sum = sum + array[pos];

// add grade in array position pos to sum

}

return float(sum)/sizeOfArray;

}

Notice that a set of empty brackets [] follows the parameter of an array which
indicates that the data type of this parameter is in fact an array. Notice also that
no brackets appear in the call to the functions that receive the array.

Since arrays in C++ are passed by pointer, which is similar to pass by reference,
it allows the original array to be altered, even though no & is used to designate
this. The getData function is thus able to store new values into the array. There
may be times when we do not want the function to alter the values of the array.
Inserting the word const before the data type on the formal parameter list pre-
vents the function from altering the array even though it is passed by pointer. This
is why in the preceding sample program the findAverage function and header
had the word const in front of the data type of the array.

float findAverage (const int array[], int sizeOfArray); // prototype

float findAverage (const int array[], int sizeOfArray) // function header

118 LESSON SET 7 Arrays

LM_Chp7.qxd 4/24/03 12:40 PM Page 118

The variable numberOfGrades contains the number of elements in the array to be
processed. In most cases not every element of the array is used, which means the
size of the array given in its definition and the number of actual elements used
are rarely the same. For that reason we often pass the actual number of ele-
ments used in the array as a parameter to a procedure that uses the array. The
variable numberOfGrades is explicitly passed by reference (by using &) to the
getData function where its corresponding formal parameter is called sizeOfArray.

Prototypes can be written without named parameters. Function headers must
include named parameters.

float findAverage (const int [], int); // prototype without named parameters

The use of brackets in function prototypes and headings can be avoided by
declaring a programmer defined data type. This is done in the global section
with a typedef statement.

Example: typedef int GradeType[50];

This declares a data type, called GradeType, that is an array containing 50 inte-
ger memory locations. Since GradeType is a data type, it can be used in defining
variables. The following defines grades as an integer array with 50 elements.

GradeType grades;

It has become a standard practice (although not a requirement) to use an upper-
case letter to begin the name of a data type. It is also helpful to include the word
“type” in the name to indicate that it is a data type and not a variable.

Sample Program 7.2 shows the revised code (in bold) of Sample Program 7.1 using
typedef.

Sample Program 7.2:

// Grade average program

// This program illustrates how one-dimensional arrays are used and how

// they are passed as arguments to functions. It contains two functions.

// The first function is called to input a set of grades and store them

// in an array. The second function is called to find the average grade.

#include <iostream>

using namespace std;

const int TOTALGRADES = 50; // maximum size of the array

// function prototypes

// declaration of an integer array data type

// called GradeType

Pre-lab Reading Assignment 119

continues

LM_Chp7.qxd 4/24/03 12:40 PM Page 119

typedef int GradeType[TOTALGRADES];

void getData(GradeType array, int& sizeOfArray);

// the procedure that will read values into the array

float findAverage(const GradeType array, int sizeOfArray);

// the procedure that will find the average of values

// stored in an array. The word const in front of the

// data type of the array prevents the function from

// altering the array

int main()

{

GradeType grades; // defines an array that holds up to 50 ints

int numberOfGrades = 0; // the number of grades read in

float average; // the average of all grades read in

getData(grades, numberOfGrades);// getData is called to read the grades into

// the array and store how many grades there

// are in numberOfGrades

average = findAverage(grades, numberOfGrades);

cout << endl << "The average of the " << numberOfGrade

<< " grades read in is " << average << "." << endl << endl;

return 0;

}

//***

// getData

//

// task: This function inputs and stores data in the grades array.

// data in: none

// data out: an array containing grades and the number of grades

//***

{

int pos = 0; // array index which starts at 0

int grade; // holds each individual grade read in

cout << "Please input a grade or type -99 to stop: " << endl;

cin >> grade;

while (grade != -99)

{

array[pos] = grade; // store grade read in to next array location

pos ++; // increment array index

cout << "Please input a grade or type -99 to stop: " << endl;

cin >> grade;

}

120 LESSON SET 7 Arrays

LM_Chp7.qxd 4/24/03 12:40 PM Page 120

void getData(GradeType array, int& sizeOfArray)

sizeOfArray = pos; // upon exiting the loop, pos holds the

// number of grades read in, which is sent

// back to the calling function

}

//**

// findAverage

//

// task: This function finds and returns the average of the values

//

// data in: the array containing grades and the array size

// data returned: the average of the grades contained in that array

//**

{

int sum = 0; // holds the sum of all grades in the array

for (int pos = 0; pos < sizeOfArray; pos++)

{

sum = sum + array[pos];

// add grade in array position pos to sum

}

return float(sum)/sizeOfArray;

}

This method of using typedef to eliminate brackets in function prototypes and
headings is especially useful for multi-dimensional arrays such as those intro-
duced in the next section.

Two-Dimensional Arrays

Data is often contained in a table of rows and columns that can be implement-
ed with a two-dimensional array. Suppose we want to read data representing
profits (in thousands) for a particular year and quarter.

Quarter 1 Quarter 2 Quarter 3 Quarter 4

72 80 10 100
82 90 43 42
10 87 48 53

This can be done using a two-dimensional array.

Example:

const NO_OF_ROWS = 3;

const NO_OF_COLS = 4;

typedef float ProfitType[NO_OF_ROWS][NO_OF_COLS]; //declares a new data type

//which is a 2 dimensional

//array of floats

Pre-lab Reading Assignment 121

continues

LM_Chp7.qxd 4/24/03 12:40 PM Page 121

float findAverage (const GradeType array, int sizeOfArray)

int main()

{

ProfitType profit; // defines profit as a 2 dimensional array

for (int row_pos = 0; row_pos < NO_OF_ROWS; row_pos++)

for (int col_pos = 0; col_pos < NO_OF_COLS; col_pos++)

{

cout << "Please input a profit" << endl;

cin >> profit[row_pos][col_pos];

}

return 0;

}

A two dimensional array normally uses two loops (one nested inside the other)
to read, process, or output data.

How many times will the code above ask for a profit? It processes the inner
loop NO_OF_ROWS * NO_OF_COLS times, which is 12 times in this case.

Multi-Dimensional Arrays

C++ arrays can have any number of dimensions (although more than three is rarely
used). To input, process or output every item in an n-dimensional array, you
need n nested loops.

Arrays of Strings

Any variable defined as char holds only one character. To hold more than one
character in a single variable, that variable needs to be an array of characters. A
string (a group of characters that usually form meaningful names or words) is
really just an array of characters. A complete lesson on characters and strings
is given in Lesson Set 10.

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. The first subscript of every array in C++ is and the last is
less than the total number of locations in the array.

2. The amount of memory allocated to an array is based on the
and the of locations

or size of the array.

3. Array initialization and processing is usually done inside a
.

4. The statement can be used to declare an array type and
is often used for multidimensional array declarations so that when passing
arrays as parameters, brackets do not have to be used.

5. Multi-dimensional arrays are usually processed within
loops.

6. Arrays used as arguments are always passed by .

122 LESSON SET 7 Arrays

LM_Chp7.qxd 4/24/03 12:40 PM Page 122

7. In passing an array as a parameter to a function that processes it, it is often
necessary to pass a parameter that holds the of

used in the array.

8. A string is an array of .

9. Upon exiting a loop that reads values into an array, the variable used as
a(n) to the array will contain the size of that array.

10. An n-dimensional array will be processed within nested
loops when accessing all members of the array.

L E S S O N 7 A

LAB 7.1 Working with One-Dimensional Arrays

Retrieve program testscore.cpp from the Lab 7 folder. The code is as follows:

// This program will read in a group of test scores (positive integers from 1 to 100)

// from the keyboard and then calculate and output the average score

// as well as the highest and lowest score. There will be a maximum of 100 scores.

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

typedef int GradeType[100]; // declares a new data type:

// an integer array of 100 elements

float findAverage (const GradeType, int); // finds average of all grades

int findHighest (const GradeType, int); // finds highest of all grades

int findLowest (const GradeType, int); // finds lowest of all grades

int main()

{

GradeType grades; // the array holding the grades.

int numberOfGrades; // the number of grades read.

int pos; // index to the array.

float avgOfGrades; // contains the average of the grades.

int highestGrade; // contains the highest grade.

int lowestGrade; // contains the lowest grade.

// Read in the values into the array

pos = 0;

cout << "Please input a grade from 1 to 100, (or -99 to stop)" << endl;

Lesson 7A 123

continues

LM_Chp7.qxd 4/24/03 12:40 PM Page 123

cin >> grades[pos];

while (grades[pos] != -99)

{

// Fill in the code to read the grades

}

numberOfGrades = _________; // Fill blank with appropriate identifier

// call to the function to find average

avgOfGrades = findAverage(grades, numberOfGrades);

cout << endl << "The average of all the grades is " << avgOfGrades << endl;

// Fill in the call to the function that calculates highest grade

cout << endl << "The highest grade is " << highestGrade << endl;

// Fill in the call to the function that calculates lowest grade

// Fill in code to write the lowest to the screen

return 0;

}

//**

// findAverage

//

// task: This function receives an array of integers and its size.

// It finds and returns the average of the numbers in the array

// data in: array of floating point numbers

// data returned: average of the numbers in the array

//

//**

float findAverage (const GradeType array, int size)

{

float sum = 0; // holds the sum of all the numbers

for (int pos = 0; pos < size; pos++)

sum = sum + array[pos];

return (sum / size); //returns the average

}

124 LESSON SET 7 Arrays

LM_Chp7.qxd 4/24/03 12:40 PM Page 124

//**

// findHighest

//

// task: This function receives an array of integers and its size.

// It finds and returns the highest value of the numbers in the array

// data in: array of floating point numbers

// data returned: highest value of the numbers in the array

//

//**

int findHighest (const GradeType array, int size)

{

/ Fill in the code for this function

}

//**

// findLowest

//

// task: This function receives an array of integers and its size.

// It finds and returns the lowest value of the numbers in the array

// data in: array of floating point numbers

// data returned: lowest value of the numbers in the array

//

//**

int findLowest (const GradeType array, int size)

{

// Fill in the code for this function

}

Exercise 1: Complete this program as directed.

Exercise 2: Run the program with the following data: 90 45 73 62 -99

and record the output here:

Exercise 3: Modify your program from Exercise 1 so that it reads the informa-

tion from the gradfile.txt file, reading until the end of file is encoun-
tered. You will need to first retrieve this file from the Lab 7 folder and

Lesson 7A 125

LM_Chp7.qxd 4/24/03 12:40 PM Page 125

place it in the same folder as your C++ source code. Run the program.

Lab 7.2 Strings as Arrays of Characters

Retrieve program student.cpp from the Lab 7 folder.

// This program will input an undetermined number of student names

// and a number of grades for each student. The number of grades is

// given by the user. The grades are stored in an array.

// Two functions are called for each student.

// One function will give the numeric average of their grades.

// The other function will give a letter grade to that average.

// Grades are assigned on a 10 point spread.

// 90-100 A 80-89 B 70-79 C 60-69 D Below 60 F

// PLACE YOUR NAME HERE

#include <iostream>

#include <iomanip>

using namespace std;

const int MAXGRADE = 25; // maximum number of grades per student

const int MAXCHAR = 30; // maximum characters used in a name

typedef char StringType30[MAXCHAR + 1];// character array data type for names

// having 30 characters or less.

typedef float GradeType[MAXGRADE]; // one dimensional integer array data type

float findGradeAvg(GradeType, int); // finds grade average by taking array of

// grades and number of grades as parameters

char findLetterGrade(float); // finds letter grade from average given

// to it as a parameter

int main()

{

StringType30 firstname, lastname;// two arrays of characters defined

int numOfGrades; // holds the number of grades

GradeType grades; // grades defined as a one dimensional array

float average; // holds the average of a student's grade

char moreInput; // determines if there is more input

cout << setprecision(2) << fixed << showpoint;

// Input the number of grades for each student

cout << "Please input the number of grades each student will receive." << endl

<< "This must be a number between 1 and " << MAXGRADE << " inclusive”

<< endl;

cin >> numOfGrades;

126 LESSON SET 7 Arrays

LM_Chp7.qxd 4/24/03 12:40 PM Page 126

while (numOfGrades > MAXGRADE || numOfGrades < 1)

{

cout << "Please input the number of grades for each student." << endl

<< "This must be a number between 1 and " << MAXGRADE

<< " inclusive\n";

cin >> numOfGrades;

}

// Input names and grades for each student

cout << "Please input a y if you want to input more students"

<< " any other character will stop the input" << endl;

cin >> moreInput;

while (moreInput == 'y' || moreInput == 'Y')

{

cout << "Please input the first name of the student" << endl;

cin >> firstname;

cout << endl << "Please input the last name of the student" << endl;

cin >> lastname;

for (int count = 0; count < numOfGrades; count++)

{

cout << endl << "Please input a grade" << endl;

// Fill in the input statement to place grade in the array

}

cout << firstname << " " << lastname << " has an average of ";

// Fill in code to get and print average of student to screen

// Fill in call to get and print letter grade of student to screen

cout << endl << endl << endl;

cout << "Please input a y if you want to input more students"

<< " any other character will stop the input" << endl;

cin >> moreInput;

}

return 0;

}

Lesson 7A 127

continues

LM_Chp7.qxd 4/24/03 12:40 PM Page 127

//***

// findGradeAvg

//

// task: This function finds the average of the

// numbers stored in an array.

//

// data in: an array of integer numbers

// data returned: the average of all numbers in the array

//

//***

float findGradeAvg(GradeType array, int numGrades)

{

// Fill in the code for this function

}

//***

// findLetterGrade

//

// task: This function finds the letter grade for the number

// passed to it by the calling function

//

// data in: a floating point number

// data returned: the grade (based on a 10 point spread) based on the number

// passed to the function

//

//***

char findLetterGrade(float numGrade)

{

// Fill in the code for this function

}

Exercise 1: Complete the program by filling in the code. (Areas in bold)

Run the program with 3 grades per student using the sample data below.

Mary Brown 100 90 90
George Smith 90 30 50
Dale Barnes 80 78 82
Sally Dolittle 70 65 80
Conrad Bailer 60 58 71

You should get the following results:

Mary Brown has an average of 93.33 which gives the letter grade of A
George Smith has an average of 56.67 which gives the letter grade of F
Dale Barnes has an average of 80.00 which gives the letter grade of B
Sally Dolittle has an average of 71.67 which gives the letter grade of C
Conrad Bailer has an average of 63.00 which gives the letter grade of D

128 LESSON SET 7 Arrays

LM_Chp7.qxd 4/24/03 12:40 PM Page 128

L E S S O N 7 B

LAB 7.3 Working with Two-Dimensional Arrays

Look at the following table containing prices of certain items:

12.78 23.78 45.67 12.67
7.83 4.89 5.99 56.84

13.67 34.84 16.71 50.89

These numbers can be read into a two-dimensional array.
Retrieve price.cpp from the Lab 7 folder. The code is as follows:

// This program will read in prices and store them into a two-dimensional array.

// It will print those prices in a table form.

// PLACE YOUR NAME HERE

#include <iostream>

#include <iomanip>

using namespace std;

const MAXROWS = 10;

const MAXCOLS = 10;

typedef float PriceType[MAXROWS][MAXCOLS]; // creates a new data type

// of a 2D array of floats

void getPrices(PriceType, int&, int&); // gets the prices into the array

void printPrices(PriceType, int, int); // prints data as a table

int main()

{

int rowsUsed; // holds the number of rows used

int colsUsed; // holds the number of columns used

PriceType priceTable; // a 2D array holding the prices

getPrices(priceTable, rowsUsed, colsUsed); // calls getPrices to fill the array

printPrices(priceTable, rowsUsed, colsUsed);// calls printPrices to display array

return 0;

}

Lesson 7B 129

continues

LM_Chp7.qxd 4/24/03 12:40 PM Page 129

//***

// getPrices

//

// task: This procedure asks the user to input the number of rows and

// columns. It then asks the user to input (rows * columns) number of

// prices. The data is placed in the array.

// data in: none

// data out: an array filled with numbers and the number of rows

// and columns used.

//

//***

void getPrices(PriceType table, int& numOfRows, int& numOfCols)

{

cout << "Please input the number of rows from 1 to "<< MAXROWS << endl;

cin >> numOfRows;

cout << "Please input the number of columns from 1 to "<< MAXCOLS << endl;

cin >> numOfCols;

for (int row = 0; row < numOfRows; row++)

{

for (int col = 0; col < numOfCols; col++)

// Fill in the code to read and store the next value in the array

}

}

//***

// printPrices

//

// task: This procedure prints the table of prices

// data in: an array of floating point numbers and the number of rows

// and columns used.

// data out: none

//

//**

void printPrices(PriceType table, int numOfRows, int numOfCols)

{

cout << fixed << showpoint << setprecision(2);

for (int row = 0; row < numOfRows; row++)

{

for (int col = 0; col < numOfCols; col++)

// Fill in the code to print the table

}

}

130 LESSON SET 7 Arrays

LM_Chp7.qxd 4/24/03 12:40 PM Page 130

Lesson 7B 131

Exercise 1: Fill in the code to complete both functions getPrices and
printPrices, then run the program with the following data:

Please input the number of rows from 1 to 10
2

Please input the number of columns from 1 to 10
3

Please input the price of an item with 2 decimal places
1.45

Please input the price of an item with 2 decimal places
2.56

Please input the price of an item with 2 decimal places
12.98

Please input the price of an item with 2 decimal places
37.86

Please input the price of an item with 2 decimal places
102.34

Please input the price of an item with 2 decimal places
67.89

1.45 2.56 12.98
37.86 102.34 67.89

Exercise 2: Why does getPrices have the parameters numOfRows and
numOfCols passed by reference whereas printPrices has those parameters
passed by value?

Exercise 3: The following code is a function that returns the highest price in
the array. After studying it very carefully, place the function in the above
program and have the program print out the highest value.

float findHighestPrice(PriceType table, int numOfRows, int numOfCols)

// This function returns the highest price in the array

{

float highestPrice;

highestPrice = table[0][0]; // make first element the highest price

for (int row = 0; row < numOfRows; row++)

for (int col = 0; col < numOfCols; col++)

if (highestPrice < table[row][col])

highestPrice = table[row][col];

return highestPrice;

}

continues

LM_Chp7.qxd 4/24/03 12:40 PM Page 131

132 LESSON SET 7 Arrays

NOTE: This is a value returning function. Be sure to include its prototype
in the global section.

Exercise 4: Create another value returning function that finds the lowest price
in the array and have the program print that value.

Exercise 5: After completing all the exercises above, run the program again
with the values from Exercise 1 and record your results.

Exercise 6: (Optional) Look at the following table that contains quarterly sales
transactions for three years of a small company. Each of the quarterly
transactions are integers (number of sales) and the year is also an integer.

YEAR Quarter 1 Quarter 2 Quarter 3 Quarter 4

2000 72 80 60 100
2001 82 90 43 98
2002 64 78 58 84

We could use a two-dimensional array consisting of 3 rows and 5 columns.
Even though there are only four quarters we need 5 columns (the first
column holds the year).

Retrieve quartsal.cpp from the Lab 7 folder. The code is as follows:

// This program will read in the quarterly sales transactions for a given number

// of years. It will print the year and transactions in a table format.

// It will calculate year and quarter total transactions.

// PLACE YOUR NAME HERE

#include <iostream>

#include <iomanip>

using namespace std;

const MAXYEAR = 10;

const MAXCOL = 5;

typedef int SalesType[MAXYEAR][MAXCOL]; // creates a new 2D integer data type

void getSales(SalesType, int&); // places sales figures into the array

void printSales(SalesType, int); // prints data as a table

void printTableHeading(); // prints table heading

int main()

{

int yearsUsed; // holds the number of years used

SalesType sales; // 2D array holding

// the sales transactions

getSales(sales, yearsUsed); // calls getSales to put data in array

LM_Chp7.qxd 4/24/03 12:40 PM Page 132

Lesson 7B 133

printTableHeading(); // calls procedure to print the heading

printSales(sales, yearsUsed); // calls printSales to display table

return 0;

}

//***

// printTableHeading

// task: This procedure prints the table heading

// data in: none

// data out: none

//

//***

void printTableHeading()

{

cout << setw(30) << "YEARLY QUARTERLY SALES" << endl << endl << endl;

cout << setw(10) << "YEAR" << setw(10) << "Quarter 1"

<< setw(10) << "Quarter 2" << setw(10) << "Quarter 3"

<< setw(10) << "Quarter 4" << endl;

}

//***

// getSales

//

// task: This procedure asks the user to input the number of years.

// For each of those years it asks the user to input the year

// (e.g. 2004), followed by the sales figures for each of the

// 4 quarters of that year. That data is placed in a 2D array

// data in: a 2D array of integers

// data out: the total number of years

//

//***

void getSales(SalesType table, int& numOfYears)

{

cout << "Please input the number of years (1-" << MAXYEAR << ')' << endl;

cin >> numOfYears;

// Fill in the code to read and store the next value

continues

LM_Chp7.qxd 4/24/03 12:40 PM Page 133

134 LESSON SET 7 Arrays

}

//***

// printSales

//

// task: This procedure prints out the information in the array

// data in: an array containing sales information

// data out: none

//

//***

void printSales(SalesType table, int numOfYears)

{

// Fill in the code to print the table

}

Fill in the code for both getSales and printSales.
This is similar to the price.cpp program in Exercise 1; however, the

code will be different. This is a table that contains something other than
sales in column one.

Exercise 7: Run the program so that the chart from Exercise 6 is printed.

LAB 7.4 Student Generated Code Assignments

Option 1: Write the complete age population program given in the Pre-lab
Reading Assignment.

Statement of the problem:

Given a list of ages (1 to 100) from the keyboard, the program will tally
how many people are in each age group.

Sample Run:
Please input an age from one to 100, put -99 to stop
5
Please input an age from one to 100, put -99 to stop
10
Please input an age from one to 100, put -99 to stop
100
Please input an age from one to 100, put -99 to stop
20
Please input an age from one to 100, put -99 to stop
5
Please input an age from one to 100, put -99 to stop
8
Please input an age from one to 100, put -99 to stop
20

LM_Chp7.qxd 4/24/03 12:40 PM Page 134

Lesson 7B 135

Please input an age from one to 100, put -99 to stop
5
Please input an age from one to 100, put -99 to stop
9
Please input an age from one to 100, put -99 to stop
17
Please input an age from one to 100, put -99 to stop
-99

The number of people 5 years old is 3
The number of people 8 years old is 1
The number of people 9 years old is 1
The number of people 10 years old is 1
The number of people 17 years old is 1
The number of people 20 years old is 2
The number of people 100 years old is 1

Option 2: Write a program that will input temperatures for consecutive days.
The program will store these values into an array and call a function that
will return the average of the temperatures. It will also call a function that
will return the highest temperature and a function that will return the
lowest temperature. The user will input the number of temperatures to be
read. There will be no more than 50 temperatures. Use typedef to declare
the array type. The average should be displayed to two decimal places.

Sample Run:
Please input the number of temperatures to be read
5
Input temperature 1:
68
Input temperature 2:
75
Input temperature 3:
36
Input temperature 4:
91
Input temperature 5:
84

The average temperature is 70.80
The highest temperature is 91.00
The lowest temperature is 36.00

Option 3: Write a program that will input letter grades (A, B, C, D, F), the
number of which is input by the user (a maximum of 50 grades). The
grades will be read into an array. A function will be called five times (once
for each letter grade) and will return the total number of grades in that
category. The input to the function will include the array, number of
elements in the array and the letter category (A, B, C, D or F). The pro-
gram will print the number of grades that are A, B, etc.

LM_Chp7.qxd 4/24/03 12:40 PM Page 135

136 LESSON SET 7 Arrays

Sample Run:
Please input the number of grades to be read in. (1-50)
6
All grades must be upper case A B C D or F
Input a grade
A
Input a grade
C
Input a grade
A
Input a grade
B
Input a grade
B
Input a grade
D

Number of A=2
Number of B=2
Number of C=1
Number of D=1
Number of F=0

LM_Chp7.qxd 4/24/03 12:40 PM Page 136

L E S S O N S E T

Searching and Sorting Arrays

PURPOSE 1. To introduce the concept of a search routine

2. To introduce the linear and binary searches

3. To introduce the concept of a sorting algorithm

4. To introduce the bubble and selection sorts

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

3. In the lab, students should complete labs assigned to them by the instructor.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment 20 min. 138

Pre-lab Writing Assignment Pre-lab reading 10 min. 148

LESSON 8A

Lab 8.1
Working with the Linear Understanding of 15 min. 149
Search character arrays

Lab 8.2
Working with the Binary Understanding of 20 min. 150
Search integer arrays

Lab 8.3
Working with Sorts Understanding of arrays 15 min. 152

LESSON 8B

Lab 8.4
Student Generated Code Understanding of arrays 50 min. 156
Assignments

8

137

LM_Chp8.qxd 4/24/03 12:42 PM Page 137

P R E - L A B R E A D I N G A S S I G N M E N T

Search Algorithms

A search algorithm is a procedure for locating a specific datum from a collection
of data.

For example, suppose you want to find the phone number for Wilson Electric
in the phonebook. You open the phonebook to the business section under W and
then look for all the entries that begin with the word Wilson. There are numer-
ous such entries, so you look for the one(s) that end with Electric. This is an exam-
ple of a search algorithm. Since each section in the phonebook is alphabetized,
this is a particularly easy search. Of course, there are numerous types of “collections
of data” that one could search. In this section we will focus on searching arrays.
Two algorithms, the linear and binary searches, will be studied. We will see that
each algorithm has its advantages and disadvantages.

Linear Search

The easiest array search to understand is probably the linear search. This algo-
rithm starts at the beginning of the array and then steps through the elements
sequentially until either the desired value is found or the end of the array is
reached. For example, suppose we want to find the first occurrence of the letter
“o” in the word “Harpoon.” We can visualize the corresponding character array
as follows:

In C++ we can initialize the character array with the desired string:

char word[8] = "Harpoon";

So word[0]='H', word[3]= 'p', and word[7] = '\0 '. The '\0' marks the end of
the string and is called the null character. It is discussed further in Lesson Set 10.
If we perform a linear search looking for 'o', then we first check word[0] which
is not equal to 'o'. So we then move to word[1] which is also not equal to 'o'.
We continue until we get to word[4]='o'. At this point the subscript 4 is returned
so we know the position in the array that contains the first occurrence of the let-
ter 'o'. What would happen if we searched for 'z'? Certainly we would step
through the array until we reached the end and not find any occurrence of 'z'.
What should the search function return in this case? It is customary to return –1
since this is not a valid array subscript. Here is the complete program that per-
forms the linear search:

Sample Program 8.1:

// This program performs a linear search on a character array

#include <iostream>

using namespace std;

int searchList(char[], int, char); // function prototype

const int SIZE = 8;

138 LESSON 8 Searching and Sorting Arrays

\0H a r p o o n

70 1 2 3 4 5 6

LM_Chp8.qxd 4/24/03 12:42 PM Page 138

int main()

{

char word[SIZE] = "Harpoon";

int found;

char ch;

cout << "Enter a letter to search for:" << endl;

cin >> ch;

found = searchList(word, SIZE, ch);

if (found == -1)

cout << "The letter " << ch

<< " was not found in the list" << endl;

else

cout << "The letter " << ch <<" is in the " << found + 1

<< " position of the list" << endl;

return 0;

}

//***

// searchList

//

// task: This searches an array for a particular value

// data in: List of values in an array, the number of

// elements in the array, and the value searched for

// in the array

// data returned: Position in the array of the value or -1 if value

// not found

//

//***

int searchList(char list[], int numElems, char value)

{

{

if (list[count] == value)

// each array entry is checked to see if it contains

// the desired value.

return count;

// if the desired value is found, the array subscript

// count is returned to indicate the location in the array

}

return -1; // if the value is not found, -1 is returned

}

Pre-lab Reading Assignment 139

LM_Chp8.qxd 4/24/03 12:42 PM Page 139

for (int count = 0;count < numElems; count++)

For example, suppose we wish to search the word “Harpoon” for the letter 'o'.
The function SearchList does the linear search and returns the index 4 of the
array where 'o' is found. However, the program outputs 5 for the position since
we want to output the character’s position within the string rather than its stor-
age location in the word array. You have certainly noticed that there is a second
occurrence of 'o' in the word “Harpoon.” However, the linear search does not
find it since it quits after finding the first occurrence.

One advantage of the linear search is its simplicity. It is easy to step sequen-
tially through an array and check each element for a designated value. Another
advantage is that the elements of the array do not need to be in any order to imple-
ment the algorithm. For example, to search the integer arrays

for the integer 99, the linear search will work. It will return 4 for the first array
and –1 for the second. The main disadvantage of the linear search is that it is time-
consuming for large arrays. If the desired piece of data is not in the array, then
the search has to check every element of the array before it returns –1. Even if
the desired piece of data is in the array, there is a very good chance that a sig-
nificant portion of the array will need to be checked to find it. So we need a more
efficient search algorithm for large arrays.

The Binary Search

A more efficient algorithm for searching an array is the binary search which elim-
inates half of the array every time it does a check. The drawback is that the data
in the array must be ordered to use a binary search. If we are searching an array
of integers, then the values stored in the array must be arranged in order from
largest to smallest or smallest to largest.

Examples: Consider the following three integer arrays:

The arrays in 1) and 3) could be searched using a binary search. In 1) the val-
ues are arranged largest to smallest and in 3) the values are arranged smallest to
largest. However, the array in 2) could not be searched using a binary search due
to the first three elements of the array: the values of the elements decrease from
19 to 15 but then increase from 15 to 16.

Now that we know which types of arrays are allowed, let us next describe
what the binary search actually does. For the sake of argument, let us assume the
values of an integer array are arranged from smallest to largest and the integer
we are searching for is stored in the variable wanted. We first pick an element in
the middle of the array—let us call it middle. Think about how the number,

140 LESSON 8 Searching and Sorting Arrays

19 15 13 13 11 6 –1 –31)

19 15 16 13 13 11 –1 –32)

–3 0 1 1 12 14 18 253)

23 45 12 456 99

12 29 45 23 456

First Array

Second Array

LM_Chp8.qxd 4/24/03 12:42 PM Page 140

whether it be even or odd, of elements in the array affects this choice. If middle ==
wanted, then we are done. Otherwise, wanted must be either greater than or less
than middle. If wanted < middle, then since the array is in ascending order we
know that wanted must be before middle in the array so we can ignore the sec-
ond half of the array and search the first half. Likewise, if wanted > middle, we
can ignore the first half of the array and search just the second half. In both cas-
es we can immediately eliminate half of the array. Once we have done this, we
will choose the middle element of the half that is left over and then repeat the
same process until either wanted is found or it is determined that wanted is not
in the array.

The following program performs a binary search on an array of integers that
is ordered from largest to smallest. Students should think about the logic of this
search and how it differs from the argument given above for data ordered small-
est to largest.

Sample Program 8.2:

// This program demonstrates a Binary Search

#include <iostream>

using namespace std;

int binarySearch(int [], int, int); // function prototype

const int SIZE = 16;

int main()

{

int found, value;

int array[] = {34,19,19,18,17,13,12,12,12,11,9,5,3,2,2,0};

// array to be searched

cout << "Enter an integer to search for:" << endl;

cin >> value;

found = binarySearch(array, SIZE, value);

// function call to perform the binary search

// on array looking for an occurrence of value

if (found == -1)

cout << "The value " << value << " is not in the list" << endl;

else

{

cout << "The value " << value << " is in position number "

<< found + 1 << " of the list" << endl;

}

return 0;

}

Pre-lab Reading Assignment 141

continues

LM_Chp8.qxd 4/24/03 12:42 PM Page 141

//***

// binarySearch

//

// task: This searches an array for a particular value

// data in: List of values in an orderd array, the number of

// elements in the array, and the value searched for

// in the array

// data returned: Position in the array of the value or -1 if value

// not found

//

//***

int binarySearch(int array[],int numElems,int value) //function heading

{

int first = 0; // First element of list

int last = numElems - 1; // last element of the list

int middle; // variable containing the current

// middle value of the list

while (first <= last)

{

middle = first + (last - first) / 2;

if (array[middle] == value)

return middle; // if value is in the middle, we are done

else if (array[middle]<value)

last = middle - 1; // toss out the second remaining half of

// the array and search the first

else

first = middle + 1; // toss out the first remaining half of

// the array and search the second

}

return -1; // indicates that value is not in the array

}

If you run this program and search for 2, the output indicates that 2 is in the 14th

position of the array. Since 2 is in the 14th and 15th position, we see that the
binary search found the first occurrence of 2 in this particular data set; however,
in Lab 8.2 you will search for values other than 2 and see that there are other pos-
sibilities for which occurrence of a sought value is found.

Sorting Algorithms

We have just seen how to search an array for a specific piece of data; however,
what if we do not like the order in which the data is stored in the array? For exam-
ple, if a collection of numerical values is not in order, we might like them to be
so we can use a binary search to find a particular value. Or, if we have a list of
names, we may want them put in alphabetical order. To sort data stored in an
array, one uses a sorting algorithm. In this section we will consider two such
algorithms—the bubble sort and the selection sort.

142 LESSON 8 Searching and Sorting Arrays

LM_Chp8.qxd 4/24/03 12:42 PM Page 142

The Bubble Sort

The bubble sort is a simple algorithm used to arrange data in either ascending
(lowest to highest) or descending (highest to lowest) order. To see how this sort
works, let us arrange the array below in ascending order.

The bubble sort begins by comparing the first two array elements. If Element 0 >

Element 1, which is true in this case, then these two pieces of data are exchanged.
The array is now the following:

Next elements 1 and 2 are compared. Since Element 1 > Element 2, another
exchange occurs:

Now elements 2 and 3 are compared. Since 9 < 11, there is no exchange at this
step. Next elements 3 and 4 are compared and exchanged:

At this point we are at the end of the array. Note that the largest value is now in
the last position of the array. Now we go back to the beginning of the array and
repeat the entire process over again. Elements 0 and 1 are compared. Since 2 > 0,
an exchange occurs:

Next elements 1 and 2 are compared. Since 2 < 9, no swap occurs. However, when
we compare elements 2 and 3 we find that 9 > 5 and so they are exchanged. Since
Element 4 contains the largest value (from the previous pass), we do not need
to make any more comparisons in this pass.

The final result is:

The data is now arranged in ascending order and the algorithm terminates. Note
that the larger values seem to rise “like bubbles” to the larger positions of the array
as the sort progresses.

We just saw in the previous example how the first pass through the array posi-
tioned the largest value at the end of the array. This is always the case. Likewise,
the second pass will always position the second to largest value in the second posi-
tion from the end of the array. The pattern continues for the third pass, fourth pass,
and so on until the array is fully sorted. Subsequent passes have one less array
element to check than their immediate predecessor.

Pre-lab Reading Assignment 143

59 2 0 11
Element 4Element 0 Element 1 Element 2 Element 3

52 9 0 11
Element 4Element 0 Element 1 Element 2 Element 3

52 0 9 11
Element 4Element 0 Element 1 Element 2 Element 3

112 0 9 5
Element 4Element 0 Element 1 Element 2 Element 3

110 2 9 5
Element 4Element 0 Element 1 Element 2 Element 3

110 2 5 9
Element 4Element 0 Element 1 Element 2 Element 3

LM_Chp8.qxd 4/24/03 12:42 PM Page 143

Sample Program 8.3:

// This program uses a bubble sort to arrange an array of integers in

// ascending order

#include <iostream>

using namespace std;

// function prototypes

void bubbleSortArray(int [], int);

void displayArray(int[], int);

const int SIZE = 5;

int main()

{

int values[SIZE] = {9,2,0,11,5};

cout << "The values before the bubble sort is performed are:" << endl;

displayArray(values,SIZE);

bubbleSortArray(values,SIZE);

cout << "The values after the bubble sort is performed are:" << endl;

displayArray(values,SIZE);

return 0;

}

//**

// displayArray

//

// task: to print the array

// data in: the array to be printed, the array size

// data out: none

//

//**

void displayArray(int array[], int elems) // function heading

{ // displays the array

for (int count = 0; count < elems; count++)

cout << array[count] << " " << endl;

}

//**

// bubbleSortArray

//

// task: to sort values of an array in ascending order

// data in: the array, the array size

// data out: the sorted array

//

//**

144 LESSON 8 Searching and Sorting Arrays

LM_Chp8.qxd 4/24/03 12:42 PM Page 144

void bubbleSortArray(int array[], int elems)

{

bool swap;

int temp;

int bottom = elems - 1; // bottom indicates the end part of the

// array where the largest values have

// settled in order

do

{

swap = false;

for (int count = 0; count < bottom; count++)

{

if (array[count] > array[count+1])

{ // the next three lines do a swap

temp = array[count];

array[count] = array[count+1];

array[count+1] = temp;

swap = true; // indicates that a swap occurred

}

}

bottom--; // bottom is decremented by 1 since each pass through

// the array adds one more value that is set in order

} while(swap != false);

// loop repeats until a pass through the array with

// no swaps occurs

}

While the bubble sort algorithm is fairly simple, it is inefficient for large arrays since
data values only move one at a time.

The Selection Sort

A generally more efficient algorithm for large arrays is the selection sort. As
before, let us assume that we want to arrange numerical data in ascending order.
The idea of the selection sort algorithm is to first locate the smallest value in the
array and move that value to the beginning of the array (i.e., position 0). Then
the next smallest element is located and put in the second position (i.e., position
1). This process continues until all the data is ordered. An advantage of the selec-
tion sort is that for n data elements at most n-1 moves are required. The disad-
vantage is that n(n-1)/2 comparisons are always required. To see how this sort
works, let us consider the array we arranged using the bubble sort:

First the smallest value is located. It is 0, so the contents of Element 0 and Element 2

are swapped:

Pre-lab Reading Assignment 145

59 2 0 11
Element 4Element 0 Element 1 Element 2 Element 3

50 2 9 11
Element 4Element 0 Element 1 Element 2 Element 3

LM_Chp8.qxd 4/24/03 12:42 PM Page 145

Next we look for the second smallest value. The important point to note here is
that we do not need to check Element 0 again since we know it already contains
the smallest data value. So the sort starts looking at Element 1. We see that the
second smallest value is 2, which is already in Element 1. Starting at Element 2

we see that 5 is the smallest of the remaining values. Thus the contents of Element 2
and Element 4 are swapped:

Finally, the contents of Element 3 and Element 4 are compared. Since 11 > 9, the
contents are swapped leaving the array ordered as desired:

Sample Program 8.4:

// This program uses a selection sort to arrange an array of integers in

// ascending order

#include <iostream>

using namespace std;

// function prototypes

void selectionSortArray(int [], int);

void displayArray(int[], int);

const int SIZE = 5;

int main()

{

int values[SIZE] = {9,2,0,11,5};

cout << "The values before the selection sort is performed are:" << endl;

displayArray(values,SIZE);

selectionSortArray(values,SIZE);

cout << "The values after the selection sort is performed are:" << endl;

displayArray(values,SIZE);

return 0;

}

//**

// displayArray

//

// task: to print the array

// data in: the array to be printed, the array size

// data out: none

//

//**

146 LESSON 8 Searching and Sorting Arrays

90 2 5 11
Element 4Element 0 Element 1 Element 2 Element 3

110 2 5 9
Element 4Element 0 Element 1 Element 2 Element 3

LM_Chp8.qxd 4/24/03 12:42 PM Page 146

void displayArray(int array[], int elems) // function heading

{ // Displays array

for (int count = 0; count < elems; count++)

cout << array[count] << " ";

cout << endl;

}

//**

// selectionSortArray

//

// task: to sort values of an array in ascending order

// data in: the array, the array size

// data out: the sorted array

//

//**

void selectionSortArray(int array[], int elems)

{

int seek; // array position currently being put in order

int minCount; // location of smallest value found

int minValue; // holds the smallest value found

for (seek = 0; seek < (elems-1); seek++) // outer loop performs the swap

// and then increments seek

{

minCount = seek;

minValue = array[seek];

for(int index = seek + 1; index < elems; index++)

{

// inner loop searches through array

// starting at array[seek] searching

// for the smallest value. When the

// value is found, the subscript is

// stored in minCount. The value is

// stored in minValue.

if(array[index] < minValue)

{

minValue = array[index];

minCount = index;

}

}

// the following two statements exchange the value of the

// element currently needing the smallest value found in the

// pass(indicated by seek) with the smallest value found

// (located in minValue)

Pre-lab Reading Assignment 147

continues

LM_Chp8.qxd 4/24/03 12:42 PM Page 147

array[minCount] = array[seek];

array[seek] = minValue;

}

}

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. The advantage of a linear search is that it is .

2. The disadvantage of a linear search is that it is .

3. The advantage of a binary search over a linear search is that a binary
search is .

4. An advantage of a linear search over a binary search is that the data must
be for a binary search.

5. After 3 passes of a binary search, approximately what fraction of the
original array still needs to be searched (assuming the desired data has not
been found)?

6. While the sort algorithm is conceptually simple, it can be
inefficient for large arrays because data values only move one at a time.

7. An advantage of the sort is that, for an array of size n, at
most n – 1 moves are required.

8. Use the bubble sort on the array below and construct the first 3 steps that
actually make changes. (Assume the sort is from smallest to largest).

9. Use the selection sort on the array below and construct the first 3 steps
that actually make changes. (Assume the sort if from smallest to largest).

148 LESSON 8 Searching and Sorting Arrays

–1719 –4 91 0
Element 4Element 0 Element 1 Element 2 Element 3

Element 4Element 0 Element 1 Element 2 Element 3

Element 4Element 0 Element 1 Element 2 Element 3

Element 4Element 0 Element 1 Element 2 Element 3

–1719 –4 91 0
Element 4Element 0 Element 1 Element 2 Element 3

Element 4Element 0 Element 1 Element 2 Element 3

Element 4Element 0 Element 1 Element 2 Element 3

Element 4Element 0 Element 1 Element 2 Element 3

LM_Chp8.qxd 4/24/03 12:42 PM Page 148

L E S S O N 8

LAB 8.1 Working with the Linear Search

Bring in program linear_search.cpp from the Lab 8 folder. This is Sample
Program 8.1 from the Pre-lab Reading Assignment. The code is the following:

// This program performs a linear search on a character array

// Place Your Name Here

#include <iostream>

using namespace std;

int searchList(char[], int, char); // function prototype

const int SIZE = 8;

int main()

{

char word[SIZE] = "Harpoon";

int found;

char ch;

cout << "Enter a letter to search for:" << endl;

cin >> ch;

found = searchList(word, SIZE, ch);

if (found == -1)

cout << "The letter " << ch

<< " was not found in the list" << endl;

else

cout << "The letter " << ch <<" is in the " << found + 1

<< " position of the list" << endl;

return 0;

}

//***

// searchList

//

// task: This searches an array for a particular value

// data in: List of values in an array, the number of

// elements in the array, and the value searched for

// in the array

// data returned: Position in the array of the value or -1 if value

// not found

//

//***

Lesson 8A 149

LM_Chp8.qxd 4/24/03 12:42 PM Page 149

int searchList(char List[], int numElems, char value)

{

for (int count = 0; count <= numElems; count++)

{

if (List[count] == value)

// each array entry is checked to see if it contains

// the desired value.

return count;

// if the desired value is found, the array subscript

// count is returned to indicate the location in the array

}

return -1; // if the value is not found, -1 is returned

}

Exercise 1: Re-write this program so that it searches an array of integers rather
than characters. Search the integer array nums[8] =

for several different integers. Make sure you try integers that are in the array
and others that are not. What happens if you search for 5?

Exercise 2: Re-write the program so that the user can continue to input values
that will be searched for, until a sentinel value is entered to end the program.
Should a pre or post test loop be used?

LAB 8.2 Working with the Binary Search

Bring in program binary_search.cpp from the Lab 8 folder. This is Sample
Program 8.2 from the Pre-lab Reading Assignment. The code is the following:

// This program demonstrates a Binary Search

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int binarySearch(int [], int, int); // function prototype

const int SIZE = 16;

int main()

{

int found, value;

int array[] = {34,19,19,18,17,13,12,12,12,11,9,5,3,2,2,0};

// array to be searched

cout << "Enter an integer to search for:" << endl;

cin >> value;

found = binarySearch(array, SIZE, value);

150 LESSON 8 Searching and Sorting Arrays

993 6 –19 5 5 0 –2

LM_Chp8.qxd 4/24/03 12:42 PM Page 150

// function call to perform the binary search

// on array looking for an occurrence of value

if (found == -1)

cout << "The value " << value << " is not in the list" << endl;

else

{

cout << "The value " << value << " is in position number "

<< found + 1 << " of the list" << endl;

}

return 0;

}

//***

// binarySearch

//

// task: This searches an array for a particular value

// data in: List of values in an orderd array, the number of

// elements in the array, and the value searched for

// in the array

// data returned: Position in the array of the value or -1 if value

// not found

//

//***

int binarySearch(int array[],int numElems,int value) //function heading

{

int first = 0; // First element of list

int last = numElems - 1; // last element of the list

int middle; // variable containing the current

// middle value of the list

while (first <= last)

{

middle = first + (last - first) / 2;

if (array[middle] == value)

return middle; // if value is in the middle, we are done

else if (array[middle] < value)

last = middle - 1; // toss out the second remaining half of

// the array and search the first

else

first = middle + 1; // toss out the first remaining half of

// the array and search the second

}

return -1; // indicates that value is not in the array

}

Lesson 8A 151

LM_Chp8.qxd 4/24/03 12:42 PM Page 151

Exercise 1: The variable middle is defined as an integer. The program contains
the assignment statement middle=first+(last-first)/2. Is the right side
of this statement necessarily an integer in computer memory? Explain how
the middle value is determined by the computer. How does this line of
code affect the logic of the program? Remember that first, last, and
middle refer to the array positions, not the values stored in those array
positions.

Exercise 2: Search the array in the program above for 19 and then 12. Record
what the output is in each case.

Note that both 19 and 12 are repeated in the array. Which occurrence of
19 did the search find?

Which occurrence of 12 did the search find?

Explain the difference.

Exercise 3: Modify the program to search an array that is in ascending order.
Make sure to alter the array initialization.

LAB 8.3 Working with Sorts

Bring in either the program bubble_sort.cpp or selection_sort.cpp from the
Lab 8 folder. These are Sample Programs 8.3 and 8.4, respectively, from the Pre-
lab Reading Assignment. The code for both are given below.

// This program uses a bubble sort to arrange an array of integers in

// ascending order

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

// function prototypes

void bubbleSortArray(int [], int);

void displayArray(int[], int);

const int SIZE = 5;

int main()

{

int values[SIZE] = {9,2,0,11,5};

cout << "The values before the bubble sort is performed are:" << endl;

displayArray(values,SIZE);

bubbleSortArray(values,SIZE);

152 LESSON 8 Searching and Sorting Arrays

LM_Chp8.qxd 4/24/03 12:42 PM Page 152

cout << "The values after the bubble sort is performed are:" << endl;

displayArray(values,SIZE);

return 0;

}

//**

// displayArray

//

// task: to print the array

// data in: the array to be printed, the array size

// data out: none

//

//**

void displayArray(int array[], int elems) // function heading

{ // displays the array

for (int count = 0; count < elems; count++)

cout << array[count] << " " << endl;

}

//**

// bubbleSortArray

//

// task: to sort values of an array in ascending order

// data in: the array, the array size

// data out: the sorted array

//

//**

void bubbleSortArray(int array[], int elems)

{

bool swap;

int temp;

int bottom = elems - 1; // bottom indicates the end part of the

// array where the largest values have

// settled in order

do

{

swap = false;

for (int count = 0; count < bottom; count++)

{

if (array[count] > array[count+1])

{ // the next three lines do a swap

temp = array[count];

array[count] = array[count+1];

array[count+1] = temp;

swap = true; // indicates that a swap occurred

}

}

Lesson 8A 153

LM_Chp8.qxd 4/24/03 12:42 PM Page 153

bottom--; // bottom is decremented by 1 since each pass through

// the array adds one more value that is set in order

} while(swap != false);

// loop repeats until a pass through the array with

// no swaps occurs

}

selection_sort.cpp

// This program uses a selection sort to arrange an array of integers in

// ascending order

//PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

// function prototypes

void selectionSortArray(int [], int);

void displayArray(int[], int);

const int SIZE = 5;

int main()

{

int values[SIZE] = {9,2,0,11,5};

cout << "The values before the selection sort is performed are:" << endl;

displayArray(values,SIZE);

selectionSortArray(values,SIZE);

cout << "The values after the selection sort is performed are:" << endl;

displayArray(values,SIZE);

return 0;

}

//**

// displayArray

//

// task: to print the array

// data in: the array to be printed, the array size

// data out: none

//

//**

void displayArray(int array[], int elems) // function heading

{ // Displays array

for (int count = 0; count < elems; count++)

cout << array[count] << " ";

cout << endl;

154 LESSON 8 Searching and Sorting Arrays

LM_Chp8.qxd 4/24/03 12:42 PM Page 154

}

//**

// selectionSortArray

//

// task: to sort values of an array in ascending order

// data in: the array, the array size

// data out: the sorted array

//

//**

void selectionSortArray(int array[], int elems)

{

int seek; // array position currently being put in order

int minCount; // location of smallest value found

int minValue; // holds the smallest value found

for (seek = 0; seek < (elems-1);seek++) // outer loop performs the swap

// and then increments seek

{

minCount = seek;

minValue = array[seek];

for(int index = seek + 1; index < elems; index++)

{

// inner loop searches through array

// starting at array[seek] searching

// for the smallest value. When the

// value is found, the subscript is

// stored in minCount. The value is

// stored in minValue.

if(array[index] < minValue)

{

minValue = array[index];

minCount = index;

}

}

// the following two statements exchange the value of the

// element currently needing the smallest value found in the

// pass(indicated by seek) with the smallest value found

// (located in minValue)

array[minCount] = array[seek];

array[seek] = minValue;

}

}

Lesson 8A 155

LM_Chp8.qxd 4/24/03 12:42 PM Page 155

Exercise 1: Re-write the sort program you chose so that it orders integers from
largest to smallest rather than smallest to largest.

Exercise 2: Modify your program from Exercise 1 so that it prints the array at
each step of the algorithm. Try sorting the array

by hand using whichever algorithm you chose. Then have your program
do the sort. Does the output match what you did by hand?

LAB 8.4 Student Generated Code Assignments

Write a program that prompts the user to enter the number of elements and the
numbers themselves to be placed in an integer array that holds a maximum of 50
elements. The program should then prompt the user for an integer which will be
searched for in the array using a binary search. Make sure to include the fol-
lowing steps along the way:

i) A sort routine must be called before the binary search. You may use either
the selection sort or the bubble sort. However, the sort must be imple-
mented in its own function and not in main.

ii) Next include a function called by main to implement the binary search.
The ordered array produced by the sort should be passed to the search
routine which returns the location in the sorted array of the sought value,
or -1 if the value is not in the array.

iii) Add a value returning function that computes the mean of your data set.
Recall that the mean is the sum of the data values divided by the number
of pieces of data. Your program should output the size of the array
entered, the array as entered by the user, the sorted array, the integer
being searched for, the location of that integer in the sorted array (or an
appropriate message if it is not in the array), and the mean of the data set.

iv) (Optional) Modify your program so that the data is entered from a file
rather than from the keyboard. The first line of the file should be the size
of the integer array. The second line should contain the integer searched
for in the data set. Finally, the array elements are to start on the third line.
Make sure you separate each array element with a space. The output, as
described in iii), should be sent to a file.

156 LESSON 8 Searching and Sorting Arrays

923 0 45 –3 –78 1 –1

LM_Chp8.qxd 4/24/03 12:42 PM Page 156

L E S S O N S E T

Pointers

PURPOSE 1. To introduce pointer variables and their relationship with arrays

2. To introduce the dereferencing operator

3. To introduce the concept of dynamic memory allocation

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

3. In the lab, students should complete labs assigned to them by the instructor.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment 20 min. 158

Pre-lab Writing Assignment Pre-lab reading 10 min. 167

LESSON 9A

Lab 9.1
Introduction to Pointer Basic understanding of 15 min. 167
Variables pointer variables

Lab 9.2
Dynamic Memory Basic understanding of 35 min. 168

dynamic memory, new
and delete operators

LESSON 9B

Lab 9.3
Dynamic Arrays Basic understanding of 25 min. 170

the relationship of
pointer variables and
arrays

Lab 9.4
Student Generated Code Basic understanding of 30 min. 171
Assignments pointers, the (*) and (&)

symbols, sort and search
routines

9

157

LM_Chp9.qxd 4/24/03 12:44 PM Page 157

P R E - L A B R E A D I N G A S S I G N M E N T

Pointer Variables

A distinction must always be made between a memory location’s address and the
data stored at that location. A street address like 119 Main St. is a location that is
different than a description of what is at that location: the little red house of the
Smith family. So far we have been concerned only with the data stored in a vari-
able, rather than with its address (where in main memory the variable is locat-
ed). In this lesson we will look at addresses of variables and at special variables,
called pointers, which hold these addresses. The address of a variable is given
by preceding the variable name with the C++ address operator (&):

cout << ∑ // This outputs the address of the variable sum

The & operator in front of the variable sum indicates that the address itself, and
not the data stored in that location, is the value used. On most systems the above
address will print as a hexadecimal value representing the physical location of the
variable. Before this lesson where have you used the address operator in C++ pro-
gramming? You may recall that it was used in the prototype and the function
heading of a function for parameters being passed by reference. This connection
will be explored in the next section.

To define a variable to be a pointer, we precede it with an asterisk (*):
int *ptr;

The asterisk in front of the variable indicates that ptr holds the address of a
memory location. The int indicates that the memory location that ptr points to
holds integer values. ptr is NOT an integer data type, but rather a pointer that
holds the address of a location where an integer value is stored. This distinction
is most important!

The following example illustrates this difference.

int sum; // sum holds an integer value.

int *sumPtr; // sumPtr holds an address where an

// integer can be found.

By now there may be confusion between the symbols * and &, so we next
discuss their use.

Using the & Symbol

The & symbol is basically used on two occasions.

1. The most frequent use we have seen is between the data type and the
variable name of a pass by reference parameter in a function heading/
prototype. This is called a reference variable. The memory address of the
parameter is sent to the function instead of the value at that address. When
the parameter is used in the function, the compiler automatically derefer-
ences the variable. Dereference means that the location of that reference
variable (parameter in this case) is accessed to retrieve or store a value.

158 LESSON SET 9 Pointers

LM_Chp9.qxd 4/24/03 12:44 PM Page 158

We have looked at the swap function on several occasions. We revisit
this routine to show that the & symbol is used in the parameters that need
to be swapped. The reason is that these values need to be changed by the
function and, thus, we give the address (location in memory) of those
values so that the function can write their new values into them as they
are swapped.

Example:
void swap(int &first, int &second)

{ // The & indicates that the parameters

// first and second are being passed by

// reference.

int temp;

temp = first; // Since first is a reference variable,

// the compiler retrieves the value

// stored there and places it in temp.

first = second // New values are written directly into

second = temp; // the memory locations of first and second.

}

2. The & symbol is also used whenever we are interested in the address of a
variable rather than its contents.

Example:
cout << sum; // This outputs the value stored in the

// variable sum.

cout << ∑ // This outputs the address where

// sum is stored in memory.

Using the & symbol to get the address of a variable comes in handy when
we are assigning values to pointer variables.

Using the * Symbol

The * symbol is also basically used on two occasions.

1. It is used to define pointer variables:

int *ptr;

2. It is also used whenever we are interested in the contents of the memory
location pointed to by a pointer variable, rather than the address itself.
When used this way * is called the indirection operator, or dereferenc-
ing operator.

Pre-lab Reading Assignment 159

LM_Chp9.qxd 4/24/03 12:44 PM Page 159

Example:

cout << *ptr; // Since ptr is a pointer variable, *

// dereferences ptr. The value stored at the

// location ptr points to will be printed.

Using * and & Together

In many ways * and & are the opposites of each other. The * symbol is used just
before a pointer variable so that we may obtain the actual data rather than the
address of the variable. The & symbol is used on a variable so that the variable’s
address, rather than the data stored in it, will be used. The following program
demonstrates the use of pointers.

Sample Program 9.1:

#include <iostream>

using namespace std;

int main()

{

int one = 10;

int *ptr1; // ptr1 is a pointer variable that points to an int

ptr1 = &one; // &one indicates that the address, not the

// contents, of one is being assigned to ptr1.

// Remember that ptr1 can only hold an address.

// Since ptr1 holds the address where the variable

// one is stored, we say that ptr1 "points to" one.

cout << "The value of one is " << one << endl << endl;

cout << "The value of &one is " << &one << endl << endl;

cout << "The value of ptr1 is " << ptr1 << endl << endl;

cout << "The value of *ptr1 is " << *ptr1 << endl << endl;

return 0;

}

What do you expect will be printed if the address of variable one is the hexa-
decimal value 006AFOF4? The following will be printed by the program.

Output Comments
The value of one is 10 one is an integer variable, holding a 10.
The value of &one is 006AF0F4 &one is the “address of” variable one.
The value of ptr1 is 006AF0F4 ptr1 is assigned one’s address
The value of *ptr1 is 10 * is the dereferencing operator which

means *ptr1 gives us the value of the
variable ptr1 is pointing at.

160 LESSON SET 9 Pointers

LM_Chp9.qxd 4/24/03 12:44 PM Page 160

Arrays and Pointers

When arrays are passed to functions they are passed by pointer. An array name
is a pointer to the beginning of the array. Variables can hold just one value and
so we can reference that value by just naming the variable. Arrays, however,
hold many values. All of these values cannot be referenced just by naming the
array. This is where pointers enter the picture. Pointers allow us to access all
the array elements. Recall that the array name is really a pointer that holds the
address of the first element in the array. By using an array index, we dereference
the pointer which gives us the contents of that array location. If grades is an array
of 5 integers, as shown below, grades is actually a pointer to the first location in
the array, and grades[0] allows us to access the contents of that first location.

From the last section we know it is also possible to dereference the pointer by
using the * operator. What is the output of the following two statements?

cout << grades[0]; // Output the value stored in the 1st array element

cout << *grades; // Output the value found at the address stored

// in grades (i.e., at the address of the 1st array

// element).

Both statements are actually equivalent. They both print out the contents of the
first grades array location, a 90.

Access of an individual element of an array through an index is done by pointer
arithmetic. We can access the second array location with grades[1], the third
location with grades[2], and so on, because the indices allow us to move through
memory to other addresses relative to the beginning address of the array. The
phrase “address + 1” in the previous diagram means to move one array element
forward from the staring address of the array. The third element is accessed by
moving 2 elements forward and so forth. The amount of movement in bytes
depends on how much memory is allocated for each element, and that depends
on how the array is defined. Since grades is defined as an array of integers, if an
integer is allocated 4 bytes, then +1 means to move forward 4 bytes from the start-
ing address of the array, +2 means to move forward 8 bytes, etc. The compiler
keeps track of how far forward to move to find a desired element based on the
array index. Thus the following two statements are equivalent.

cout << grades[2];

cout << *(grades + 2);

Both statements refer to the value located two elements forward from the start-
ing address of the array. Although the first may be the easiest, computer scien-
tists need to understand how to access memory through pointers. The following
program illustrates how to use pointer arithmetic rather than indexing to access
the elements of an array.

Pre-lab Reading Assignment 161

90 88 76 54 54

starting
address

grades

starting
address + 1

starting
address + 2

starting
address + 3

starting
address + 4

LM_Chp9.qxd 4/24/03 12:44 PM Page 161

Sample Program 9.2:

// This program illustrates how to use pointer arithmetic to

// access elements of an array.

#include <iostream>

using namespace std;

int main()

{

int grades[] = {90, 88, 76, 54, 34};

// This defines and initializes an int array.

// Since grades is an array name, it is really a pointer

// that holds the starting address of the array.

cout << "The first grade is " // The * before grades

<< *grades << endl; // dereferences it so that the

// contents of array location 0

// is printed instead of its

// address.

cout << "The second grade is " // The same is done for the other

<< *(grades + 1) << endl; // elements of the array. In

cout << "The third grade is " // each case, pointer arithmetic

<< *(grades + 2) << endl; // gives us the address of the

cout << "The fourth grade is " // next array element. Then the

<< *(grades + 3) << endl; // indirection operator * gives

cout << "The fifth grade is " // us the value of what is stored

<< *(grades + 4) << endl; // at that address.

return 0;

}

What is printed by the program?

The first grade is 90
The second grade is 88
The third grade is 76
The fourth grade is 54
The fifth grade is 34

Dynamic Variables

In Lesson Set 7 on arrays, we saw how the size of an array is given at the time
of its definition. The programmer must estimate the maximum number of elements
that will be used by the array and this size is static, i.e., it cannot change during
the execution of the program. Consequently, if the array is defined to be larger
than is needed, memory is wasted. If it is defined to be smaller than is needed,
there is not enough memory to hold all of the elements. The use of pointers
(and the new and delete operators described below) allows us to dynamically allo-
cate enough memory for an array so that memory is not wasted.

162 LESSON SET 9 Pointers

LM_Chp9.qxd 4/24/03 12:44 PM Page 162

This leads us to dynamic variables. Pointers allow us to use dynamic variables,
which can be created and destroyed as needed within a program. We have stud-
ied scope rules, which define where a variable is active. Related to this is the con-
cept of lifetime, the time during which a variable exists. The lifetime of dynamic
variables is controlled by the program through explicit commands to allocate
(i.e., create) and deallocate (i.e., destroy) them. The operator new is used to allo-
cate and the operator delete is used to deallocate dynamic variables. The com-
piler keeps track of where in memory non-dynamic variables (variables discussed
thus far in this book) are located. Their contents can be accessed by just naming
them. However, the compiler does not keep track of the address of a dynamic
variable. When the new command is used to allocate memory for a dynamic vari-
able, the system returns its address and the programmer stores it in a pointer vari-
able. Through the pointer variable we can access the memory location.

Example:

int *one; // one and two are defined to be pointer

int *two; // variables that point to ints

int result; // defines an int variable that will hold

// the sum of two values.

one = new int; // These statements each dynamically

two = new int; // allocate enough memory to hold an int

// and assign their addresses to pointer

// variables one and two, respectively.

*one = 10; // These statements assign the value 10

*two = 20; // to the memory location pointed to by one

// and 20 to the memory location pointed to

// by two.

result = *one + *two;

// This adds the contents of the memory

// locations pointed to by one and two.

cout << "result = " << result << endl;

delete one; // These statements deallocate the dynamic

delete two; // variables. Their memory is freed and

// they cease to exist.

Now let us use dynamic variables to allocate an appropriate amount of memory
to hold an array. By using the new operator to create the array, we can wait until
we know how big the array needs to be before creating it. The following program
demonstrates this idea. First the user is asked to input the number of grades to
be processed. Then that number is used to allocate exactly enough memory to
hold an array with the required number of elements for the grades.

Pre-lab Reading Assignment 163

LM_Chp9.qxd 4/24/03 12:44 PM Page 163

Sample Program 9.3:

// This program finds the average of a set of grades.

// It dynamically allocates space for the array holding the grades.

#include <iostream>

#include <iomanip>

using namespace std;

// function prototypes

void sortIt (float* grades, int numOfGrades);

void displayGrades(float* grades, int numOfGrades);

int main()

{

float *grades; // a pointer that will be used to point

// to the beginning of a float array

float total = 0; // total of all grades

float average; // average of all grades

int numOfGrades; // the number of grades to be processed

int count; // loop counter

cout << fixed << showpoint << setprecision(2);

cout << "How many grades will be processed " << endl;

cin >> numOfGrades;

while (numOfGrades <= 0) // checks for a legal value

{

cout << "There must be at least one grade. Please reenter.\n";

cout << "How many grades will be processed " << endl;

cin >> numOfGrades;

}

grades = new float(numOfGrades);

// allocation memory for an array

// new is the operator that is allocating

// an array of floats with the number of

// elements specified by the user. grades

// is the pointer holding the starting

// address of the array.

if (grades == NULL) // NULL is a special identifier predefined

{ // to equal 0. It indicates a non-valid

// address. If grades is 0 it means the

// the operating system was unable to

// allocate enough memory for the array.

cout << "Error allocating memory!\n";

// The program should output an appropriate

return –1; // error message and return with a value

} // other than 0 to signal a problem.

cout << "Enter the grades below\n";

164 LESSON SET 9 Pointers

LM_Chp9.qxd 4/24/03 12:44 PM Page 164

for (count = 0; count < numOfGrades; count++)

{

cout << "Grade " << (count + 1) << ": " << endl;

cin >> grades[count];

total = total + grades[count];

}

average = total / numOfGrades;

cout << "Average Grade is " << average << "%" << endl;

sortIt(grades, numOfGrades);

displayGrades(grades, numOfGrades);

delete [] grades; // deallocates all the array memory

return 0;

}

//***

// sortIt

//

// task: to sort numbers in an array

// data in: an array of floats and

// the number of elements in the array

// data out: sorted array

//

//**

void sortIt(float* grades, int numOfGrades)

{

// Sort routine placed here

}

//***

// displayGrades

//

// task: to display numbers in an array

// data in: an array of floats and

// the number of elements in the array

// data out: none

//

//**

void displayGrades(float* grades, int numOfGrades)

{

// Code to display grades of the array

}

Notice how the dynamic array is passed as a parameter to the sortIt and
displayGrades functions. In each case, the call to the function simply passes
the name of the array, along with its size as an argument. The name of the array
holds the array’s starting address.

sortIt(grades, numOfGrades);

Pre-lab Reading Assignment 165

LM_Chp9.qxd 4/24/03 12:44 PM Page 165

In the function header, the formal parameter that receives the array is defined to
be a pointer data type.

void sortIt(float* grades, int numOfGrades)

Since the compiler treats an array name as a pointer, we could also have written
the following function header.

void sortIt(float grades[], int numOfGrades)

Review of * and &

The * symbol is used to define pointer variables. In this case it appears in the vari-
able definition statement between the data type and the pointer variable name.
It indicates that the variable holds an address, rather than the data stored at that
address.

Example 1: int *ptr1;

* is also used as a dereferencing operator. When placed in front of an already
defined pointer variable, the data stored at the location the pointer points to will
be used and not the address.

Example 2: cout << *ptr1;

Since ptr1 is defined as a pointer variable in Example 1, if we assume ptr1 has
now been assigned an address, the output of Example 2 will be the data stored
at that address. * in this case dereferences the variable ptr1.

The & symbol is used in a procedure or function heading to indicate that
a parameter is being passed by reference. It is placed between the data type
and the parameter name of each parameter that is passed by reference.

The & symbol is also used before a variable to indicate that the address,
not the contents, of the variable is to be used.

Example 3:

int *ptr1;

int one = 10;

ptr1 = &one; // This assigns the address of variable

// one to ptr1

cout << "The value of &one is "

<< &one << endl; // This prints an address

cout << "The value of *ptr1 is "

<< *ptr1 << endl; // This prints 10, because ptr1 points to

// one and * is the dereferencing operator.

166 LESSON SET 9 Pointers

LM_Chp9.qxd 4/24/03 12:44 PM Page 166

In this program, dynamic allocation of memory was used to save memory. This

amounts of data are used.

is a minor consideration for the type of programs done in this course, but a
major concern in professional programming environments where large fluctuating

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. The symbol is the dereferencing operator.

2. The symbol means “address of.”

3. The name of an array, without any brackets, acts as a(n)
to the starting address of the array.

4. An operator that allocates a dynamic variable is .

5. An operator that deallocates a dynamic variable is .

6. Parameters that are passed by are similar to a pointer
variable in that they can contain the address of another variable. They are
used as parameters of a procedure (void function) whenever we want a
procedure to change the value of the argument.

Given the following information, fill the blanks with either “an address” or “3.75”.

float * pointer;
float pay = 3.75;
pointer = &pay;

7. cout << pointer; will print .

8. cout << *pointer; will print .

9. cout << &pay; will print .

10. cout << pay; will print .

L E S S O N 9 A

LAB 9.1 Introduction to Pointer Variables

Retrieve program pointers.cpp from the Lab 9 folder.
The code is as follows:

// This program demonstrates the use of pointer variables

// It finds the area of a rectangle given length and width

// It prints the length and width in ascending order

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

int length; // holds length

int width; // holds width

int area; // holds area

int *lengthPtr; // int pointer which will be set to point to length

int *widthPtr; // int pointer which will be set to point to width

Pre-Lab Writing Assignment 167

continues

LM_Chp9.qxd 4/24/03 12:44 PM Page 167

cout << "Please input the length of the rectangle" << endl;

cin >> length;

cout << "Please input the width of the rectangle" << endl;

cin >> width;

// Fill in code to make lengthPtr point to length (hold its address)

// Fill in code to make widthPtr point to width (hold its address)

area = // Fill in code to find the area by using only the pointer variables

cout << "The area is " << area << endl;

if (// Fill in the condition length > width by using only the pointer variables)

cout << "The length is greater than the width" << endl;

else if (// Fill in the condition of width > length by using only the pointer

// variables)

cout << "The width is greater than the length" << endl;

else

cout << "The width and length are the same" << endl;

return 0;

}

}

Exercise 1: Complete this program by filling in the code (places in bold). Note:
use only pointer variables when instructed to by the comments in bold.
This program is to test your knowledge of pointer variables and the & and
* symbols.

Exercise 2: Run the program with the following data: 10 15. Record the output
here .

LAB 9.2 Dynamic Memory

Retrieve program dynamic.cpp from the Lab 9 folder.
The code is as follows:

// This program demonstrates the use of dynamic variables

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

const int MAXNAME = 10;

168 LESSON SET 9 Pointers

LM_Chp9.qxd 4/24/03 12:44 PM Page 168

int main()

{

int pos;

char * name;

int * one;

int * two;

int * three;

int result;

// Fill in code to allocate the integer variable one here

// Fill in code to allocate the integer variable two here

// Fill in code to allocate the integer variable three here

// Fill in code to allocate the character array pointed to by name

cout << "Enter your last name with exactly 10 characters." << endl;

cout << "If your name has < 10 characters, repeat last letter. " << endl

<< "Blanks at the end do not count." << endl;

for (pos = 0; pos < MAXNAME; pos++)

cin >> // Fill in code to read a character into the name array

// WITHOUT USING a bracketed subscript

cout << "Hi ";

for (pos = 0; pos < MAXNAME; pos++)

cout << // Fill in code to a print a character from the name array

// WITHOUT USING a bracketed subscript

cout << endl << "Enter three integer numbers separated by blanks" << endl;

// Fill in code to input three numbers and store them in the

// dynamic variables pointed to by pointers one, two, and three.

// You are working only with pointer variables

//echo print

cout << "The three numbers are " << endl;

// Fill in code to output those numbers

result = // Fill in code to calculate the sum of the three numbers

cout << "The sum of the three values is " << result << endl;

// Fill in code to deallocate one, two, three and name

return 0;

}

Exercise 1: Complete the program by filling in the code. (Areas in bold)
This problem requires that you study very carefully the code already
written to prepare you to complete the program.

Lesson 9A 169

LM_Chp9.qxd 4/24/03 12:44 PM Page 169

Sample Run:

Enter your last name with exactly 10 characters.
If your name < 10 characters, repeat last letter. Blanks do not count.
DeFinooooo
Hi DeFinooooo
Enter three integer numbers separated by blanks
5 6 7
The three numbers are 5 6 7
The sum of the three values is 18

Exercise 2: In inputting and outputting the name, you were asked NOT to use
a bracketed subscript. Why is a bracketed subscript unnecessary?

Would using name[pos] work for inputting the name? Why or why not?
Would using name[pos] work for outputting the name? Why or why not?

Try them both and see.

L E S S O N 9 B

LAB 9.3 Dynamic Arrays

Retrieve program darray.cpp from the Lab 9 folder.
The code is as follows:

// This program demonstrates the use of dynamic arrays

// PLACE YOUR NAME HERE

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

float *monthSales; // a pointer used to point to an array

// holding monthly sales

float total = 0; // total of all sales

float average; // average of monthly sales

int numOfSales; // number of sales to be processed

int count; // loop counter

cout << fixed << showpoint << setprecision(2);

cout << "How many monthly sales will be processed? ";

cin >> numOfSales;

// Fill in the code to allocate memory for the array pointed to by

// monthSales.

170 LESSON SET 9 Pointers

LM_Chp9.qxd 4/24/03 12:44 PM Page 170

if (// Fill in the condition to determine if memory has been

// allocated (or eliminate this if construct if your instructor

// tells you it is not needed for your compiler)

)

{

cout << "Error allocating memory!\n";

return 1;

}

cout << "Enter the sales below\n";

for (count = 0; count < numOfSales; count++)

{

cout << "Sales for Month number "

<< // Fill in code to show the number of the month

<< ":";

// Fill in code to bring sales into an element of the array

}

for (count = 0; count < numOfSales; count++)

{

total = total + monthSales[count];

}

average = // Fill in code to find the average

cout << "Average Monthly sale is $" << average << endl;

// Fill in the code to deallocate memory assigned to the array.

return 0;

}

Exercise 1: Fill in the code as indicated by the comments in bold.

Sample Run:

How many monthly sales will be processed 3
Enter the sales below
Sales for Month number 1: 401.25
Sales for Month number 2: 352.89
Sales for Month number 3: 375.05
Average Monthly sale is $376.40

LAB 9.4 Student Generated Code Assignments

In these assignments you are asked to develop functions that have dynamic
arrays as parameters. Remember that dynamic arrays are accessed by a point-
er variable and thus the parameters that serve as dynamic arrays are, in fact,
pointer variables.

Lesson 9B 171

LM_Chp9.qxd 4/24/03 12:44 PM Page 171

Example:
void sort(float* score, int num_scores); // a prototype whose function has a

// dynamic array as its first

// parameter. It is a pointer variable
.
.

int main()

{

float *score; // a pointer variable
.
.

score = new float(num_scores); // allocation of the array

sort(score,scoreSize); // call to the function

Option 1: Write a program that will read scores into an array. The size of the
array should be input by the user (dynamic array). The program will find
and print out the average of the scores. It will also call a function that will
sort (using a bubble sort) the scores in ascending order. The values are
then printed in this sorted order.

Sample Run:

Please input the number of scores
5
Please enter a score
100
Please enter a score
90
Please enter a score
95
Please enter a score
100
Please enter a score
90
The average of the scores is 95

Here are the scores in ascending order
90
90
95
100
100

Option 2: This program will read in id numbers and place them in an array.
The array is dynamically allocated large enough to hold the number of id
numbers given by the user. The program will then input an id and call a
function to search for that id in the array. It will print whether the id is in
the array or not.

172 LESSON SET 9 Pointers

LM_Chp9.qxd 4/24/03 12:44 PM Page 172

Sample Run:

Please input the number of id numbers to be read
4
Please enter an id number
96
Please enter an id number
97
Please enter an id number
98
Please enter an id number
99

Please input an id number to be searched
67
67 is not in the array

Option 3: Write a program that will read monthly sales into a dynamically
allocated array. The program will input the size of the array from the user.
It will call a function that will find the yearly sum (the sum of all the
sales). It will also call another function that will find the average.

Sample Run:

Please input the number of monthly sales to be input
4
Please input the sales for month 1
1290.89
Please input the sales for month 2
905.95
Please input the sales for month 3
1567.98
Please input the sales for month 4
994.83
The total sales for the year is $4759.65
The average monthly sale is $1189.91

Lesson 9B 173

LM_Chp9.qxd 4/24/03 12:44 PM Page 173

LM_Chp9.qxd 4/24/03 12:44 PM Page 174

L E S S O N S E T

Characters and Strings

PURPOSE 1. To demonstrate the unique characteristics of character data

2. To view strings as an array of characters

3. To show how to input and output strings

4. To work with string functions

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to the lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

3. In the lab, students should complete labs assigned to them by the instructor.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment 20 min. 176

Pre-lab Writing Assignment Pre-lab reading 10 min. 186

LESSON 10A

Lab 10.1
Character Testing and String Pre-lab reading 15 min. 187
Validation

Lab 10.2
Case Conversion Basic fundamental 5 min. 190

instructions

Lab 10.3
Using getline() & get() Basic knowledge of 30 min. 192

character arrays

LESSON 10B

Lab 10.4
String Functions—strcat Basic knowledge of 15 min. 193

character arrays

Lab 10.5
Student Generated Code Basic knowledge of 35 min. 193
Assignments character arrays

10

175

LM_Chp10.qxd 4/24/03 12:45 PM Page 175

P R E - L A B R E A D I N G A S S I G N M E N T

Character Functions

C++ provides numerous functions for character testing. These functions will test
a single character and return either a non-zero value (true) or zero (false). For exam-
ple, isdigit tests a character to see if it is one of the digits between 0 and 9.
So isdigit(7) returns a non-zero value whereas isdigit(y) and isdigit($)both
return 0. We will not list all the character functions here. A complete list may be
found in the text. The following program demonstrates some of the others.
Note that the cctype header file must be included to use the character functions.

Sample Program 10.1:

// This program utilizes several functions for character testing

#include <iostream>

#include <cctype>

using namespace std;

int main()

{

char input;

cout << "Please Enter Any Character:" << endl;

cin >> input;

cout << "The character entered is " << input << endl << endl;

cout << "The ASCII code for " << input << " is " << int(input)

<< endl;

if (isalpha(input)) // tests to see if character is a letter

{

cout << "The character is a letter" << endl;

if (islower(input)) // tests to see if letter is lower case

cout << "The letter is lower case" << endl;

if (isupper(input)) // tests to see if letter is upper case

cout << "The letter is upper case" << endl;

}

else if (isdigit(input)) // tests to see if character is a digit

cout << "The character you entered is a digit" << endl;

else

cout << "The character entered is not a letter nor a digit"

<< endl;

return 0;

}

In Lab 10.1 you will see a more practical application of character testing functions.

176 LESSON 10 Characters and Strings

LM_Chp10.qxd 4/24/03 12:45 PM Page 176

Character Case Conversion

The C++ library provides the toupper and tolower functions for converting the
case of a character. toupper returns the uppercase equivalent for a letter and
tolower returns the lower case equivalent. For example, cout << tolower('F');

causes an f to be displayed on the screen. If the letter is already lowercase, then
tolower will return the value unchanged. Likewise, any non-letter argument is
returned unchanged by tolower. It should be clear to you now what toupper does
to a given character.

While the toupper and tolower functions are conceptually quite simple, they
may not appear to be very useful. However, the following program shows that
they do have beneficial applications.

Sample Program 10.2:

// This program shows how the toupper and tolower functions can be

// applied in a C++ program

#include <iostream>

#include <cctype>

#include <iomanip>

using namespace std;

int main()

{

int week, total, dollars;

float average;

char choice;

cout << showpoint << fixed << setprecision(2);

do

{

total = 0;

for(week = 1; week <= 4; week++)

{

cout << "How much (to the nearest dollar) did you"

<< " spend on food during week " << week

<< " ?:" << endl;

cin >> dollars;

total = total + dollars;

}

average = total / 4.0;

cout << "Your weekly food bill over the chosen month is $"

<< average << endl << endl;

do

{

cout << "Would you like to find the average for "

<< "another month?";

Pre-lab Reading Assignment 177

continues

LM_Chp10.qxd 4/24/03 12:45 PM Page 177

cout << endl << "Enter Y or N" << endl;

cin >> choice;

} while(toupper(choice) != 'Y' && toupper(choice) != 'N');

} while (toupper(choice) == 'Y');

return 0;

}

This program prompts the user to input weekly food costs, to the nearest dollar
(an integer) for a four-week period. The average weekly total for that month is
output. Then the user is asked whether they want to repeat the calculation for a
different month. The flow of this program is controlled by a do-while loop. The
condition toupper(choice) == 'Y' allows the user to enter 'Y' or 'y' for yes.
This makes the program more user friendly than if we just allowed 'Y'. Note the
second do-while loop near the end of the program. This loop also utilizes toupper.
Can you determine the purpose of this second loop? How would the execution
of the program be affected if we removed this loop (but left in the lines between
the curly brackets)?

String Constants

We have already talked about the character data type which includes letters, dig-
its, and other special symbols such as $ and @. Often we need to put characters
together to form strings. For example, the price “$1.99” and the phrase “one for
the road!” are both strings of characters. The phrase contains blank space char-
acters in addition to letters and an exclamation mark. In C++ a string is treated
as a sequence of characters stored in consecutive memory locations. The end of
the string in memory is marked by the null character \0. Do not confuse the
null character with a sequence of two characters (i.e., \ and 0). The null char-
acter is actually an escape sequence. Its ASCII code is 0. For example, the phrase
above is stored in computer memory as

A string constant is a string enclosed in double quotation marks. For example,

“Learn C++”
“What time is it?”
“Code Word 7dF#c&Q”

are all string constants. When they are stored in the computer’s memory, the
null character is automatically appended. The string “Please enter a digit” is
stored as

When a string constant is used in C++, it is the memory address that is actually
accessed. In the statement

cout << "Please enter a digit";

the memory address is passed to the cout object. cout then displays the con-
secutive characters until the null character is reached.

178 LESSON 10 Characters and Strings

o n e f o r t h e r o a d ! \0

P l e a s e e n t e r a d i g i t \0

LM_Chp10.qxd 4/24/03 12:45 PM Page 178

Storing Strings in Arrays

Often we need to access parts of a string rather than the whole string. For
instance, we may want to alter characters in a string or even compare two strings.
If this is the case, then a string constant is not what we need. Rather, a charac-
ter array is the appropriate choice. When using character arrays, enough space
to hold the null character must be allocated. For example:

char last[10];

This code defines a 10-element character array called last. However, this array
can hold no more than 9 non-null characters since a space is reserved for the null
character. Consider the following:

char last[10];

cout << "Please enter your last name using no more than 9 letters";

cin >> last;

If the user enters Symon, then the following will be the contents of the last array:

Recall that the computer actually sees last as the beginning address of the array.
There is a problem that can arise when using the cin object on a character array.
cin does not “know” that last has only 10 elements. If the user enters
Newmanouskous after the prompt, then cin will write past the end of the array. We
can get around this problem by using the getline function. If we use

cin.getline(last,10)

then the computer knows that the maximum length of the string, including the
null character, is 10. Consequently, cin will read until the user hits ENTER or until
9 characters have been read, whichever occurs first. Once the string is in the
array, it can be processed character by character. In this next section we will see
a program that uses cin.getline().

Library Functions for Strings

The C++ library provides many functions for testing and manipulating strings. For
example, to determine the length of a given string one can use the strlen func-
tion. The syntax is shown in the following code:

char line[40] = "A New Day";

int length;

length = strlen(line);

Here strlen(line)returns the length of the string including white spaces but not
the null character at the end. So the value of length is 9. Note this is smaller than
the size of the actual array holding the string.

To see why we even need a function such as strlen, consider the problem
of reading in a string and then writing it backwards. If we only allowed strings
of a fixed size, say length 29 for example, then the task would be easy. We sim-
ply read the string into an array of size 30 or more. Then write the 28th entry fol-
lowed by the 27th entry and so on, until we reach the 0th entry. However, what
if we wish to allow the user to input strings of different lengths? Now it is unclear
where the end of the string is. Of course, we could search the array until we find

Pre-lab Reading Assignment 179

S y m o n \0

LM_Chp10.qxd 4/24/03 12:45 PM Page 179

the null character and then figure out what position it is in. But this is precisely
what the strlen function does for us. Sample Program 10.3 is a complete pro-
gram that performs the desired task.

Sample Program 10.3:

#include <iostream>

#include <cstring>

using namespace std;

int main()

{

char line[50];

int length,count = 0;

cout << "Enter a sentence of no more than 49 characters:\n";

cin.getline(line,50);

length = strlen(line); // strlen returns the length of the

// string currently stored in line

cout << "The sentence entered read backwards is:\n";

for(count = length-1; count >= 0; count--)

{

cout << line[count];

}

cout << endl;

return 0;

}

Sample Run 1:

Enter a sentence of no more than 49 characters:
luaP deiruB I
The sentence you entered printed backwards is:
I Buried Paul

Sample Run 2:

Enter a sentence of no more than 49 characters:
This sentence is too long to hold a mere 49 characters!
The sentence you entered printed backwards is:
arahc 94 erem a dloh ot gnol oot si ecnetnes sihT

Another useful function for strings is strcat, which concatenates two strings.
strcat(string1,string2)attaches the contents of string2 to the end of string1.
The programmer must make sure that the array containing string1 is large
enough to hold the concatenation of the two strings plus the null character.

180 LESSON 10 Characters and Strings

LM_Chp10.qxd 4/24/03 12:45 PM Page 180

Consider the following code:

char string1[25] = "Total Eclipse "; // note the space after the second

// word - strcat does not insert a

// space. The programmer must do this.

char string2[11] = "of the Sun";

cout << string1 << endl;

cout << string2 << endl;

strcat(string1,string2);

cout << string1 << endl;

These statements produce the following output:

Total Eclipse
of the Sun
Total Eclipse of the Sun

What would have happened if we had defined string1 to be a character array
of size 20?

There are several other string functions such as strcpy (copies the second
string to the first string), strcmp (compares two strings to see if they are the
same or, if not, which string is alphabetically greater than the other), and strstr
(looks for the occurrence of a string inside of another string). Note that C-string
functions require the cstring header file. For more details on these string func-
tions and the others, see the text.

The get and ignore functions

There are several ways of inputting strings. We could use the standard >> extrac-
tion operator for a character array or string class object. However, we know that
using cin >> skips any leading whitespace (blanks, newlines). It will also stop
at the first trailing whitespace character. So, for example, the name “John Wayne”
cannot be read as a single string using cin >> because of a blank space between
the first and last names. We have already seen the getline function which does
allow blank spaces to be read and stored. In this section we will introduce the
get and ignore functions, which are also useful for string processing.

The get function reads in the next character in the input stream, including
whitespace. The syntax is

cin.get(ch);

Once this function call is made, the next character in the input stream is stored
in the variable ch. So if we want to input

$ X

we can use the following:

cin.get(firstChar);

cin.get(ch);

cin.get(secondChar);

where firstChar, ch, and secondChar are all character variables. Note that after the
second call to the get function, the blank character is stored in the variable ch.

Pre-lab Reading Assignment 181

LM_Chp10.qxd 4/24/03 12:45 PM Page 181

The get function, like the getline function, can also be used to read strings. In
this case we need two parameters:

cin.get(strName, numChar+1);

Here strName is a string variable and the integer expression numChar+1 gives the
number of characters that may be read into strName.

Both the getline and the get functions do not skip leading whitespace char-
acters. The get statement above brings in the next input characters until it either
has read numChar+1 characters or it reaches the newline character \n. However,
the newline character is not stored in strName. The null character is then append-
ed to the end of the string. Since the newline character is not consumed (not read
by the get function), it remains part of the input characters yet to be read.

Example:

char strName[21];

cin.get(strName,21);

Now suppose we input

John Wayne

Then “John Wayne” is stored in strName. Next input

My favorite westerns star John Wayne

In this case the string “My favorite westerns” is stored in strName.

We often work with records from a file that contain character data followed
by numeric data. Look at the following data which has a name, hours worked,
and pay rate for each record stored on a separate line.

Pay Roll Data

John Brown 7 12.50
Mary Lou Smith 12 15.70
Dominic DeFino 8 15.50

Since names often have imbedded blank spaces, we can use the get function to
read them. We then use an integer variable to store the number of hours and a
floating point variable to store the pay rate. At the end of each line is the ‘\n’ char-
acter. Note that the end of line character is not consumed by reading the pay rate
and, in fact, is the next character to be read when reading the second name
from the file. This creates problems. Whenever we need to read through characters
in the input stream without storing them, we can use the ignore function. This
function has two arguments, the first is an integer expression and the second is
a character expression. For example, the call

cin.ignore(80,'\n');

says to skip over the next 80 input characters but stop if a newline character is
read. The newline character is consumed by the ignore function. This use of
ignore is often employed to find the end of the current input line.

182 LESSON 10 Characters and Strings

LM_Chp10.qxd 4/24/03 12:45 PM Page 182

The following program will read the sample pay roll data from a file called
payRoll.dat and show the result to the screen. Note that the input file must have
names that are no longer than 15 characters and the first 15 positions of each line
are reserved for the name. The numeric data must be after the 15th position in
each line.

Sample Program 10.4:

#include <fstream>

#include <iostream>

using namespace std;

const int MAXNAME = 15;

int main()

{

ifstream inData;

inData.open("payRoll.dat");

char name[MAXNAME+1];

int hoursWorked;

float payRate;

inData.get(name,MAXNAME+1); // prime the read

while (inData)

{

inData >> hoursWorked;

inData >> payRate;

cout << name << endl;

cout << "Hours Worked " << hoursWorked << endl;

cout << "Pay Rate " << payRate << " per hour"

<< endl << endl;

inData.ignore(80,'\n');

// This will ignore up to 80 characters but will

// stop (ignoring) when it reads the \n which is

// consumed.

inData.get(name,MAXNAME+1);

}

return 0;

}

Pre-lab Reading Assignment 183

LM_Chp10.qxd 4/24/03 12:45 PM Page 183

Summary of types of input for strings:

cin >> strName; // skips leading whitespace. Stops at the first

// trailing whitespace (which is not consumed)

cin.get(strName, 21); // does not skip leading whitespace

// stops when either 20 characters are read or

// '\n' is encountered (which is not consumed)

cin.ignore(200,'\n'); // ignores at most 200 characters but stops if

// newline (which is consumed) is encountered

Pointers and Strings

Pointers can be very useful for writing string processing functions. If one needs
to process a certain string, the beginning address can be passed with a pointer
variable. The length of the string does not even need to be known since the
computer will start processing using the address and continue through the string
until the null character is encountered.

Sample Program 10.5 below reads in a string of no more than 50 characters
and then counts the number of letters, digits, and whitespace characters in
the string. Notice the use of the pointer strPtr, which points to the string
being processed. The three functions countLetters, countDigits, and
countWhiteSpace all perform basically the same task—the while loop is exe-
cuted until strPtr points to the null character marking the end of the string. In
the countLetters function, characters are tested to see if they are letters. The
if(isalpha(*strPtr))statement determines if the character pointed at by strPtr
is a letter. If so, then the counter occurs is incremented by one. After the char-
acter has been tested, strPtr is incremented by one to test the next character. The
other two functions are analogous.

Sample Program 10.5:

#include <iostream>

#include <cctype>

using namespace std;

//function prototypes

int countLetters(char*);

int countDigits(char*);

int countWhiteSpace(char*);

int main()

{

int numLetters, numDigits, numWhiteSpace;

char inputString[51];

cout <<"Enter a string of no more than 50 characters: "

<< endl << endl;

184 LESSON 10 Characters and Strings

LM_Chp10.qxd 4/24/03 12:45 PM Page 184

cin.getline(inputString,51);

numLetters = countLetters(inputString);

numDigits = countDigits(inputString);

numWhiteSpace = countWhiteSpace(inputString);

cout << "The number of letters in the entered string is "

<< numLetters << endl;

cout << "The number of digits in the entered string is "

<< numDigits << endl;

cout << "The number of white spaces in the entered string is "

<< numWhiteSpace << endl;

return 0;

}

//***

// countLetters

//

// task: This function counts the number of letters

// (both capital and lower case) in the string

// data in: pointer that points to an array of characters

// data returned: number of letters in the array of characters

//

//***

int countLetters(char *strPtr)

{

int occurs = 0;

while(*strPtr != '\0') // loop is executed as long as

// the pointer strPtr does not point

// to the null character which

// marks the end of the string

{

if (isalpha(*strPtr)) // isalpha determines if

// the character is a letter

occurs++;

strPtr++;

}

return occurs;

}

//***

// countDigits

//

// task: This function counts the number of digits

// in the string

// data in: pointer that points to an array of characters

// data returned: number of digits in the array of characters

//

//***

Pre-lab Reading Assignment 185

continues

LM_Chp10.qxd 4/24/03 12:45 PM Page 185

int countDigits(char *strPtr)

{

int occurs = 0;

while(*strPtr != '\0')

{

if (isdigit(*strPtr)) // isdigit determines if

// the character is a digit

occurs++;

strPtr++;

}

return occurs;

}

//***

// countWhiteSpace

//

// task: This function counts the number of whitespace

// characters in the string

// data in: pointer that points to an array of characters

// data returned: number of whitespaces in the array of

// characters

//

//***

int countWhiteSpace(char *strPtr) // this function counts the

// number of whitespace characters.

// These include, space, newline,

// vertical tab, and tab

{

int occurs = 0;

while(*strPtr != '\0')

{

if (isspace(*strPtr)) // isspace determines if

// the character is a

// whitespace character

occurs++;

strPtr++;

}

return occurs;

}

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. The code cout << toupper('b'); causes a to be dis-
played on the screen.

2. The data type returned by isalpha('g') is .

186 LESSON 10 Characters and Strings

LM_Chp10.qxd 4/24/03 12:45 PM Page 186

3. After the assignment statement result = isdigit('$'), result has the
value .

4. The code cout << tolower('#'); causes a to be dis-
played on the screen.

5. The end of a string is marked in computer memory by the .

6. In cin.getline(name,25), the 25 indicates that the user can input at most
characters into name.

7. Consider the following:

char message[35] = "Like tears in the rain";

int length;

length = strlen(message);

Then the value of length is .

8. Consider the code

char string1[30] = "In the Garden";

char string2[15] = "of Eden";

strcat(string1,string2);

cout << string1;

The output for this is .

9. The header file must be included to access the islower
and isspace character functions.

10. In C++, a string constant must be enclosed in whereas a
character constant must be enclosed in .

L E S S O N 1 0

LAB 10.1 Character Testing and String Validation

The American Equities investment company offers a wide range of investment
opportunities ranging from mutual funds to bonds. Investors can check the val-
ue of their portfolio from the American Equities’ web page. Information about
personal portfolios is protected via encryption and can only be accessed using
a password. The American Equities company requires that a password consist of
8 characters, 5 of which must be letters and the other 3 digits. The letters and dig-
its can be arranged in any order. For example,

rt56AA7q
123actyN
1Lo0Dwa9
myNUM741

are all valid passwords. However, the following are all invalid:

the476NEw // It contains more than 8 characters (also more than 5
// letters)

be68moon // It contains less than 3 digits.

$retrn99 // It contains only 2 digits and has an invalid character (‘$’)

Lesson 10A 187

LM_Chp10.qxd 4/24/03 12:45 PM Page 187

American Equities needs a program for their web page that determines whether or
not an entered password is valid. The program american_equities.cpp from the
Lab 10 folder performs this task. The code is the following:

// This program tests a password for the American Equities

// web page to see if the format is correct

// Place Your Name Here

#include <iostream>

#include <cctype>

#include <cstring>

using namespace std;

//function prototypes

bool testPassWord(char[]);

int countLetters(char*);

int countDigits(char*);

int main()

{

char passWord[20];

cout << "Enter a password consisting of exactly 5 "

<< "letters and 3 digits:" << endl;

cin.getline(passWord,20);

if (testPassWord(passWord))

cout << "Please wait - your password is being verified" << endl;

else

{

cout << "Invalid password. Please enter a password "

<< "with exactly 5 letters and 3 digits" << endl;

cout << "For example, my37RuN9 is valid" << endl;

}

// Fill in the code that will call countLetters and

// countDigits and will print to the screen both the number of

// letters and digits contained in the password.

return 0;

}

188 LESSON 10 Characters and Strings

LM_Chp10.qxd 4/24/03 12:45 PM Page 188

//**

// testPassWord

//

// task: determines if the word in the

// character array passed to it, contains

// exactly 5 letters and 3 digits.

// data in: a word contained in a character array

// data returned: true if the word contains 5 letters & 3

// digits, false otherwise

//

//**

bool testPassWord(char custPass[])

{

int numLetters, numDigits, length;

length = strlen(custPass);

numLetters = countLetters(custPass);

numDigits = countDigits(custPass);

if (numLetters == 5 && numDigits == 3 && length == 8)

return true;

else

return false;

}

// the next 2 functions are from Sample Program 10.5

//**

// countLetters

//

// task: counts the number of letters (both

// capital and lower case)in the string

// data in: a string

// data returned: the number of letters in the string

//

//**

int countLetters(char *strPtr)

{

int occurs = 0;

while(*strPtr != '\0')

{

if (isalpha(*strPtr))

occurs++;

strPtr++;

}

return occurs;

}

Lesson 10A 189

continues

LM_Chp10.qxd 4/24/03 12:45 PM Page 189

//**

// countDigits

//

// task: counts the number of digits in the string

// data in: a string

// data returned: the number of digits in the string

//

//**

int countDigits(char *strPtr)

{

int occurs = 0;

while(*strPtr != '\0')

{

if (isdigit(*strPtr)) // isdigit determines if

// the character is a digit

occurs++;

strPtr++;

}

return occurs;

}

Exercise 1: Fill in the code in bold and then run the program several times
with both valid and invalid passwords. Read through the program and
make sure you understand the logic of the code.

Exercise 2: Alter the program so that a valid password consists of 10 charac-
ters, 6 of which must be digits and the other 4 letters.

Exercise 3: Adjust your program from Exercise 2 so that only lower case
letters are allowed for valid passwords.

LAB 10.2 Case Conversion

Bring in case_convert.cpp from the Lab 10 folder. Note that this is Sample
Program 10.2. The code is the following:

// This program shows how the toupper and tolower functions can be

// applied in a C++ program

// PLACE YOUR NAME HERE

#include <iostream>

#include <cctype>

#include <iomanip>

using namespace std;

int main()

{

int week, total, dollars;

float average;

char choice;

190 LESSON 10 Characters and Strings

LM_Chp10.qxd 4/24/03 12:45 PM Page 190

cout << showpoint << fixed << setprecision(2);

do

{

total = 0;

for(week = 1; week <= 4; week++)

{

cout << "How much (to the nearest dollar) did you"

<< " spend on food during week " << week

<< " ?:" << endl;

cin >> dollars;

total = total + dollars;

}

average = total / 4.0;

cout << "Your weekly food bill over the chosen month is $"

<< average << endl << endl;

do

{

cout << "Would you like to find the average for "

<< "another month?";

cout << endl << "Enter Y or N" << endl;

cin >> choice;

} while(toupper(choice) != 'Y' && toupper(choice) != 'N');

} while (toupper(choice) == 'Y');

return 0;

}

Exercise 1: Run the program several times with various inputs.

Exercise 2: Notice the following do-while loop which appears near the end of
the program:

do

{

cout << "Would you like to find the average for another month?";

cout << endl << "Enter Y or N" << endl;

cin >> choice;

} while(toupper(choice) != 'Y' && toupper(choice) != 'N');

How would the execution of the program be different if we removed this
loop? Try removing the loop but leave the following lines in the program:

cout << "Would you like to find the average for another month?";

cout << endl << "Enter Y or N" << endl;

cin >> choice;

Record what happens when you run the new version of the program.

Exercise 3: Alter program case_convert.cpp so that it performs the same task
but uses tolower rather than toupper.

Lesson 10A 191

LM_Chp10.qxd 4/24/03 12:45 PM Page 191

LAB 10.3 Using getline() & get()

Exercise 1: Write a short program called readata.cpp that defines a character
array last which contains 10 characters. Prompt the user to enter their last
name using no more than 9 characters. The program should then read the
name into last and then output the name back to the screen with an
appropriate message. Do not use the getline() or get functions!

Exercise 2: Once the program in Exercise 1 is complete, run the program and
enter the name Newmanouskous at the prompt. What, if anything,
happens? (Note that the results could vary depending on your system).

Exercise 3: Re-write the program above using the getline() function (and
only allowing 9 characters to be input). As before, use the character array
last consisting of 10 elements. Run your new program and enter
Newmanouskous at the prompt. What is the output?

Exercise 4: Bring in program grades.cpp and grades.txt from the Lab 10
folder. Fill in the code in bold so that the data is properly read from
grades.txt. and the desired output to the screen is as follows:

OUTPUT TO SCREEN DATA FILE

Adara Starr has a(n) 94 average Adara Starr 94
David Starr has a(n) 91 average David Starr 91
Sophia Starr has a(n) 94 average Sophia Starr 94
Maria Starr has a(n) 91 average Maria Starr 91
Danielle DeFino has a(n) 94 average Danielle DeFino 94
Dominic DeFino has a(n) 98 average Dominic DeFino 98
McKenna DeFino has a(n) 92 average McKenna DeFino 92
Taylor McIntire has a(n) 99 average Taylor McIntire 99
Torrie McIntire has a(n) 91 average Torrie McIntire 91
Emily Garrett has a(n) 97 average Emily Garrett 97
Lauren Garrett has a(n) 92 average Lauren Garrett 92
Marlene Starr has a(n) 83 average Marlene Starr 83
Donald DeFino has a(n) 73 average Donald DeFino 73

The code of grades.cpp is as follows:

#include <fstream>

#include <iostream>

using namespace std;

// PLACE YOUR NAME HERE

const int MAXNAME = 20;

int main()

{

ifstream inData;

inData.open("grades.txt");

char name[MAXNAME + 1]; // holds student name

float average; // holds student average

192 LESSON 10 Characters and Strings

LM_Chp10.qxd 4/24/03 12:45 PM Page 192

inData.get(name,MAXNAME+1);

while (inData)

{

inData >> average;

// Fill in the code to print out name and

// student average

// Fill in the code to complete the while

// loop so that the rest of the student

// names and average are read in properly

}

return 0;

}

LAB 10.4 String Functions—strcat

Consider the following code:

char string1[25] ="Total Eclipse ";

char string2[11] = "of the Sun";

cout << string1 << endl;

cout << string2 << endl;

strcat(string1,string2);

cout << string1 << endl;

Exercise 1: Write a complete program including the above code that outputs
the concatenation of string1 and string2. Run the program and record
the result.

Exercise 2: Alter the program in Exercise 1 so that string1 contains 20 charac-
ters rather than 25. Run the program. What happens?

LAB 10.5 Student Generated Code Assignments

Exercise 1: A palindrome is a string of characters that reads the same for-
wards as backwards. For example, the following are both palindromes:

1457887541 madam

Write a program that prompts the user to input a string of a size 50 characters or
less. Your program should then determine whether or not the entered string is a
palindrome. A message should be displayed to the user informing them whether
or not their string is a palindrome.

Exercise 2: The strcmp(string1,string2) function compares string1 to
string2. It is a value returning function that returns a negative integer if
string1 < string2, 0 if string1 == string2, and a positive integer if
string1 > string2. Write a program that reads two names (last name first
followed by a comma followed by the first name) and then prints them in
alphabetical order. The two names should be stored in separate character
arrays holding a maximum of 25 characters each. Use the strcmp() func-
tion to make the comparison of the two names. Remember that 'a' < 'b',
'b' < 'c', etc. Be sure to include the proper header file to use strcmp().

Lesson 10B 193

LM_Chp10.qxd 4/24/03 12:45 PM Page 193

Sample Run 1:

Please input the first name

Brown, George

Please input the second name

Adams, Sally

The names are as follows:

Adams, Sally

Brown, George

Sample Run 2:

Please input the first name

Brown, George

Please input the second name

Brown, George

The names are as follows:

Brown, George

Brown, George

The names are the same

Exercise 3: (Optional) Write a program that determines how many consonants
are in an entered string of 50 characters or less. Output the entered string
and the number of consonants in the string.

194 LESSON 10 Characters and Strings

LM_Chp10.qxd 4/24/03 12:45 PM Page 194

L E S S O N S E T

Structures and
Abstract Data Types

PURPOSE 1. To introduce the concept of an abstract data type

2. To introduce the concept of a structure

3. To develop and manipulate an array of structures

4. To use structures as parameters

5. To use hierarchical (nested) structures

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

3. In the lab, students should complete labs assigned to them by the instructor.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment 20 min. 196

Pre-lab Writing Assignment Pre-lab reading 10 min. 205

LESSON 11 A

Lab 11.1
Working with Basic Structures Knowledge of previous 15 min. 205

chapters

Lab 11.2
Initializing Structures Basic understanding of 15 min. 206

structures

Lab 11.3
Arrays of Structures Basic understanding of 20 min. 208

arrays and structures

LESSON 11 B

Lab 11.4
Nested Structures Basic understanding of 20 min. 209

functions and nested logic

Lab 11.5
Student Generated Code Completion of all the 30 min. 211
Assignments previous labs

11

195

LM_Chp11.qxd 4/24/03 12:46 PM Page 195

P R E - L A B R E A D I N G A S S I G N M E N T

So far we have learned of data types such as float, int, char, etc. In some
applications the programmer needs to create their own data type. A user defined
data type is often an abstract data type (ADT). The programmer must decide
which values are valid for the data type and which operations may be performed
on the data type. It may even be necessary for the programmer to design new
operations to be applied to the data. We will study this style of programming exten-
sively when we introduce object-oriented programming in the lesson set from
Chapter 13.

As an example, suppose you want to create a program to simulate a calen-
dar. The program may contain the following ADTs: year, month, and day. Note
that month could take on values January, February, . . . , December or even 1,2,
. . . ,12 depending on the wishes of the programmer. Likewise, the range of val-
ues for day could be Monday, Tuesday, . . . , Sunday or even 1,2, . . . ,7. There
is much more flexibility in the choice of allowable values for year. If the pro-
grammer is thinking short term they may wish to restrict year to the range
1990–2010. Of course there are many other possibilities.

In this lab we study the structure. Like arrays, structures allow the pro-
grammer to group data together. However, unlike an array, structures allow you
to group together items of different data types. To see how this could be useful
in practice, consider what a student must do to register for a college course.
Typically, one obtains the current list of available courses and then selects the
desired course or courses. The following is an example of a course you may
choose:

CHEM 310 Physical Chemistry 4 Credits

Note that there are four items related to this course: the course discipline (CHEM),
the course number (310), the course title (Physical Chemistry), and the number
of credit hours (4). We could define variables as follows:

Variable Definition Information Held
char discipline[5] 4-letter abbreviation for discipline
int courseNumber Integer valued course number
char courseTitle[21] First 20 characters of course title
short credits Number of credit hours

All of these variables are related because they can hold information about the
same course. We can package these together by creating a structure. Here is
the declaration:

struct course

{

char discipline[5];

int courseNumber;

char courseTitle[21];

short credits;

}; //note the semi-colon here

The tag is the name of the structure, course in this case. The tag is used like a
data type name. Inside the braces we have the variable declarations that are
the members of the structure. So the code above declares a structure named
course which has four members: discipline, courseNumber, courseTitle, and
credits.

196 LESSON SET 11 Structures and Abstract Data Types

LM_Chp11.qxd 4/24/03 12:46 PM Page 196

Pre-lab Reading Assignment 197

The programmer needs to realize that the structure declaration does not
define a variable. Rather it lets the compiler know what a course structure is
composed of. That is, the declaration creates a new data type called course. We
can now define variables of type course as follows:

course pChem;

course colonialHist;

Both pChem and colonialHist will contain the four members previously listed.
We could have also defined these two structure variables on a single line:

course pChem, colonialHist;

Both pChem and colonialHist are called instances of the course structure. In
other words, they are both user defined variables that exist in computer memory.
Each structure variable contains the four structure members.

Access to Structure Members

Certainly the programmer will need to assign the members values and also keep
track of what values the members have. C++ allows you to access structure
members using the dot operator. Consider the following syntax:

colonialHist.credits = 3;

In this statement the integer 3 is assigned to the credits member of colonialHist.
The dot operator is used to connect the member name to the structure variable
it belongs to.

Now let us put all of these ideas together into a program. Sample Program 11.1
below uses the course structure just described. This interactive program allows a
student to add requested courses and keeps track of the number of credit hours
for which they have enrolled. The execution is controlled by a do-while loop.

Sample Program 11.1:

#include <iostream>

#include <cctype>

using namespace std;

// This program demonstrates the use of structures

const int MAXDISCIPLINE = 4;

const int MAXCOURSE = 20;

// structure declaration

struct course

{

char discipline[MAXDISCIPLINE + 1];

int courseNumber;

char courseTitle[MAXCOURSE + 1];

short credits;

};

continues

LM_Chp11.qxd 4/24/03 12:46 PM Page 197

int main()

{

course nextClass; // next class is a course structure

int numCredits = 0;

char addClass;

do

{

cout << "Please enter course discipline area: ";

cin >> nextClass.discipline;

cout << endl << "Pleae enter the course number: ";

cin >> nextClass.courseNumber;

cout << endl << "Please enter the course title: ";

cin.ignore(); // necessary for the next line

cin.getline(nextClass.courseTitle,MAXCOURSE + 1);

// we add an extra space to read the end of line character

// use getline because course title may have a blank space

cout << "Please enter the number of credit hours: ";

cin >> nextClass.credits;

numCredits = numCredits + nextClass.credits;

// output the selected course and pertinent information

cout << "You have been registered for the following: " << endl;

cout << nextClass.discipline << " " << nextClass.courseNumber

<< " " << nextClass.courseTitle

<< " " << nextClass.credits << "credits" << endl;

cout << “Would you like to add another class? (Y/N)" << endl;

cin >> addClass;

} while(toupper(addClass) == 'Y');

cout << "The total number of credit hours registerd for is: "

<< numCredits << endl;

return 0;

}

Make sure that you understand the logic of this program and, in particular, how
structures are used. Notice the line at the end of the while loop that reads

while(toupper(addclass) == 'Y');

What do you think the purpose of toupper is?
As a second example, suppose we would like a simple program that com-

putes the area and circumference of two circles input by the user. Although we
can easily do this using previously developed techniques, let us see how this can
be done using structures. We will also determine which circle’s center is further
from the origin.

198 LESSON SET 11 Structures and Abstract Data Types

LM_Chp11.qxd 4/24/03 12:46 PM Page 198

Sample Program 11.2:

#include <iostream>

#include <cmath> // necessary for pow function

#include <iomanip>

using namespace std;

struct circle // declares the structure circle

{ // This structure has 6 members

float centerX; // x coordinate of center

float centerY; // y coordinate of center

float radius;

float area;

float circumference;

float distance_from_origin;

};

const float PI = 3.14159;

int main()

{

circle circ1, circ2; // defines 2 circle structure variables

cout << "Please enter the radius of the first circle: ";

cin >> circ1.radius;

cout << endl

<< "Please enter the x-coordinate of the center: ";

cin >> circ1.centerX;

cout << endl

<< "Please enter the y-coordinate of the center: ";

cin >> circ1.centerY;

circ1.area = PI * pow(circ1.radius, 2.0);

circ1.circumference = 2 * PI * circ1.radius;

circ1.distance_from_origin = sqrt(pow(circ1.centerX,2.0)

+ pow(circ1.centerY,2.0));

cout << endl << endl;

cout << "Please enter the radius of the second circle: ";

cin >> circ2.radius;

cout << endl

<< "Please enter the x-coordinate of the center: ";

cin >> circ2.centerX;

cout << endl

<< "Please enter the y-coordinate of the center: ";

cin >> circ2.centerY;

circ2.area = PI * pow(circ2.radius, 2.0);

circ2.circumference = 2 * PI * circ2.radius;

circ2.distance_from_origin = sqrt(pow(circ2.centerX,2.0)

+ pow(circ2.centerY,2.0));

Pre-lab Reading Assignment 199

continues

LM_Chp11.qxd 4/24/03 12:46 PM Page 199

cout << endl << endl;

// This next section determines which circle's center is

// closer to the origin

if (circ1.distance_from_origin > circ2.distance_from_origin)

{

cout << "The first circle is further from the origin"

<< endl << endl;

}

else if (circ1.distance_from_origin < circ2.distance_from_origin)

{

cout << "The first circle is closer to the origin"

<< endl << endl;

}

else

cout << "The two circles are equidistant from the origin";

cout << endl << endl;

cout << setprecision(2) << fixed << showpoint;

cout << "The area of the first circle is : ";

cout << circ1.area << endl;

cout << "The circumference of the first circle is: ";

cout << circ1.circumference << endl << endl;

cout << "The area of the second circle is : ";

cout << circ2.area << endl;

cout << "The circumference of the second circle is: ";

cout << circ2.circumference << endl << endl;

return 0;

}

Arrays of Structures

In the previous sample program we were interested in two instances of the cir-
cle structure. What if we need a much larger number, say 100, instances of this
structure? Rather than define each one separately, we can use an array of struc-
tures. An array of structures is defined just like any other array. For example sup-
pose we already have the following structure declaration in our program:

struct circle

{

float centerX; // x coordinate of center

float centerY; // y coordinate of center

float radius;

float area;

float circumference;

float distance_from_origin; // distance of center from origin

};

200 LESSON SET 11 Structures and Abstract Data Types

LM_Chp11.qxd 4/24/03 12:46 PM Page 200

Then the following statement defines an array, circn, which has 100 elements.
Each of these elements is a circle structure variable:

circle circn[100];

Like the arrays encountered in previous lessons, you can access an array ele-
ment using its subscript. So circn[0] is the first structure in the array, circn[1]
is the second, and so on. The last structure in the array is circn[99]. To access
a member of one of these array elements, we still use the dot operator. For
instance, circn[9].circumference gives the circumference member of circn[9].
If we want to display the center and distance from the origin of the first 30 cir-
cles we can use the following:

for (int count = 0; count < 30; count++)

{

cout << circn[count].centerX << endl;

cout << circn[count].centerY << endl;

cout << circn[count].distance_from_origin;

}

When studying arrays you may have seen two-dimensional arrays which allow
one to have “a collection of collections” of data. An array of structures allows
one to do the same thing. However, we have already noted that structures
permit you to group together items of different data type, whereas arrays do
not. So an array of structures can sometimes be used when a two-dimensional
array cannot.

Initializing Structures

We have already seen numerous examples of initializing variables and arrays at
the time of their definition in the previous labs. Members of structures can also
be initialized when they are defined. Suppose we have the following structure dec-
laration in our program:

struct course

{

char discipline[5];

int courseNumber;

char courseTitle[21];

short credits;

};

A structure variable colonialHist can be defined and initialized:

course colonialHist = {"HIST",302,"Colonial History",3};

The values in this list are assigned to course’s members in the order they appear.
Thus, the string "HIST" is assigned to colonialHist.discipline, the integer 302
is assigned to colonialHist.courseNumber, the string "Colonial History" is
assigned to colonialHist.courseTitle, and the short value 3 is assigned to
colonialHist.credits. It is not necessary to initialize all the members of a struc-
ture variable. For example, we could initialize just the first member:

course colonialHist = {"HIST"};

This statement leaves the last three members uninitialized. We could also initial-
ize only the first two members:

course colonialHist = {"HIST",302};

Pre-lab Reading Assignment 201

LM_Chp11.qxd 4/24/03 12:46 PM Page 201

There is one important rule, however, when initializing structure members. If
one structure member is left uninitialized, then all structure members that follow
it must be uninitialized. In other words, we cannot skip members of a structure
during the initialization process.

It is also worth pointing out that you cannot initialize a structure member in
the declaration of the structure. The following is an illegal declaration:

// illegal structure declaration

struct course

{

char discipline[5] = "HIST"; // illegal

int courseNumber = 302; // illegal

char courseTitle[20] = "Colonial History"; // illegal

short credits = 3; // illegal

};

If we recall what a structure declaration does, it is clear why the above code is
illegal. A structure declaration simply lets the compiler know what a structure is
composed of. That is, the declaration creates a new data type (called course in
this case). So the structure declaration does not define any variables. Hence there
is nothing that can be initialized there.

Hierarchical (Nested) Structures

Often it is useful to nest one structure inside of another structure. Consider the
following:

Sample Program 11.3:

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

struct center_struct

{

float x; // x coordinate of center

float y; // y coordinate of center

};

struct circle

{

float radius;

float area;

float circumference;

center_struct coordinate;

};

const float PI = 3.14159;

int main()

{

circle circ1, circ2; // defines 2 circle structure variables

202 LESSON SET 11 Structures and Abstract Data Types

LM_Chp11.qxd 4/24/03 12:46 PM Page 202

cout << "Please enter the radius of the first circle: ";

cin >> circ1.radius;

cout << endl

<< "Please enter the x-coordinate of the center: ";

cin >> circ1.coordinate.x;

cout << endl

<< "Please enter the y-coordinate of the center: ";

cin >> circ1.coordinate.y;

circ1.area = PI * pow(circ1.radius, 2.0);

circ1.circumference = 2 * PI * circ1.radius;

cout << endl << endl;

cout << "Please enter the radius of the second circle: ";

cin >> circ2.radius;

cout << endl

<< "Please enter the x-coordinate of the center: ";

cin >> circ2.coordinate.x;

cout << endl

<< "Please enter the y-coordinate of the center: ";

cin >> circ2.coordinate.y;

circ2.area = PI * pow(circ2.radius, 2.0);

circ2.circumference = 2 * PI * circ2.radius;

cout << endl << endl;

cout << setprecision(2) << fixed << showpoint;

cout << "The area of the first circle is : ";

cout << circ1.area << endl;

cout << "The circumference of the first circle is: ";

cout << circ1.circumference << endl;

cout << "Circle 1 is centered at (" << circ1.coordinate.x

<< "," << circ1.coordinate.y << ")." << endl << endl;

cout << "The area of the second circle is : ";

cout << circ2.area << endl;

cout << "The circumference of the second circle is: ";

cout << circ2.circumference << endl ;

cout << "Circle 2 is centered at (" << circ2.coordinate.x

<< "," << circ2.coordinate.y << ")." << endl << endl;

return 0;

}

Note that the programs in this lesson so far have not been modularized. Everything
is done within the main function. In practice, this is not good structured pro-
gramming. It can lead to unreadable and overly repetitious code. To solve this
problem, we need to be able to pass structures and structure members to func-
tions. In this next section, you will see how to do this.

Pre-lab Reading Assignment 203

LM_Chp11.qxd 4/24/03 12:46 PM Page 203

Structures and Functions

Just as we can use other variables as function arguments, structure members
may be used as function arguments. Consider the following structure declaration:

struct circle

{
float centerX; // x coordinate of center

float centerY; // y coordinate of center

float radius;

float area;

};

Suppose we also have the following function definition in the same program:

float computeArea(float r)

{
return PI * r * r; // PI must previously be defined as a

// constant float

}

Let firstCircle be a variable of the circle structure type. The following func-
tion call passes firstCircle.radius into r. The return value is stored in
firstCircle.area:

firstCircle.area = computeArea(firstCircle.radius);

It is also possible to pass an entire structure variable into a function rather than
an individual member.

struct course

{

char discipline[5];

int courseNumber;

char courseTitle[21];

short credits;

};

course pChem;

Suppose the following function definition uses a course structure variable as its
parameter:

void displayInfo(course c)

{
cout << c.discipline << endl;

cout << c.courseNumber << endl;

cout << c.courseTitle << endl;

cout << c.credits << endl;

}

Then the following call passes the pChem variable into c:

displayInfo(pChem);

There are many other topics relating to functions and structures such as return-
ing a structure from a function and pointers to structures. Although we do not have
time to develop these concepts in this lab, the text does contain detailed cover-
age of these topics for the interested programmer.

204 LESSON SET 11 Structures and Abstract Data Types

LM_Chp11.qxd 4/24/03 12:46 PM Page 204

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. The name of a structure is called the .

2. An advantage of structures over arrays is that structures allow one to use
items of data types, whereas arrays do not.

3. One structure inside of another structure is an example of a .

4. The variables declared inside the structure declaration are called the
of the structure.

5. When initializing structure members, if one structure member is left
uninitialized, then all the structure members that follow must be

.

6. A user defined data type is often an .

7. Once an array of structures has been defined, you can access an array
element using its .

8. The allows the programmer to access structure members.

9. You may not initialize a structure member in the .

10. Like variables, structure members may be used as
arguments.

L E S S O N 1 1 A

LAB 11.1 Working with Basic Structures

Bring in program rect_struct.cpp from the Lab 11 folder. The code is shown
below.

#include <iostream>

#include <iomanip>

using namespace std;

// This program uses a structure to hold data about a rectangle

// PLACE YOUR NAME HERE

// Fill in code to declare a structure named rectangle which has

// members length, width, area, and perimeter all of which are floats

int main()

{

// Fill in code to define a rectangle variable named box

cout << "Enter the length of a rectangle: ";

// Fill in code to read in the length member of box

cout << "Enter the width of a rectangle: ";

Lesson 11A 205

continues

LM_Chp11.qxd 4/24/03 12:46 PM Page 205

// Fill in code to read in the width member of box

cout << endl << endl;

// Fill in code to compute the area member of box

// Fill in code to compute the perimeter member of box

cout << fixed << showpoint << setprecision(2);

// Fill in code to output the area with an appropriate message

// Fill in code to output the perimeter with an appropriate message

return 0;

}

Exercise 1: Fill in the code as indicated by the comments in bold.

Exercise 2: Add code to the program above so that the modified program will
determine whether or not the rectangle entered by the user is a square.

Sample Run:

Enter the length of a rectangle: 7
Enter the width of a rectangle: 7
The area of the rectangle is 49.00
The perimeter of the rectangle is 28.00
The rectangle is a square.

LAB 11.2 Initializing Structures

Bring in program init_struct.cpp from the Lab 11 folder. The code is shown
below.

#include <iostream>

using namespace std;

// This program demonstrates partially initialized structure variables

// PLACE YOUR NAME HERE

struct taxPayer

{

char name[25];

long socialSecNum;

float taxRate;

float income;

float taxes;

};

int main()

{

206 LESSON SET 11 Structures and Abstract Data Types

LM_Chp11.qxd 4/24/03 12:46 PM Page 206

#include <iomanip>

// Fill in code to initialize a structure variable named citizen1 so that

// the first three members are initialized. Assume the name is Tim

// McGuiness, the social security number is 255871234, and the tax rate is .35

// Fill in code to initialize a structure variable named citizen2 so that

// the first three members are initialized. Assume the name is John Kane,

// the social security number is 278990582, and the tax rate is .29

cout << fixed << showpoint << setprecision(2);

// calculate taxes due for citizen1

// Fill in code to prompt the user to enter this year's income for the citizen1

// Fill in code to read in this income to the appropriate structure member

// Fill in code to determine this year's taxes for citizen1

cout << "Name: " << citizen1.name << endl;

cout << "Social Security Number: " << citizen1.socialSecNum << endl;

cout << "Taxes due for this year: $" << citizen1.taxes << endl << endl;

// calculate taxes due for citizen2

// Fill in code to prompt the user to enter this year's income for citizen2

// Fill in code to read in this income to the appropriate structure member

// Fill in code to determine this year's taxes for citizen2

cout << "Name: " << citizen2.name << endl;

cout << "Social Security Number: " << citizen2.socialSecNum << endl;

cout << "Taxes due for this year: $" << citizen2.taxes << endl << endl;

return 0;

}

Exercise 1: Fill in the code as indicated by the comments in bold.

Sample Run:

Please input the yearly income for Tim McGuiness: 30000
Name: Tim McGuiness
Social Security Number: 255871234
Taxes due for this year: $10500.00

Please input the yearly income for John Kane: 60000
Name: John Kane
Social Security Number: 278990582
Taxes due for this year: $17400.00

Lesson 11A 207

LM_Chp11.qxd 4/24/03 12:46 PM Page 207

LAB 11.3 Arrays of Structures

Bring in program array_struct.cpp from the Lab 11 folder. The code is shown
below.

#include <iostream>

#include <iomanip>

using namespace std;

// This program demonstrates how to use an array of structures

// PLACE YOUR NAME HERE

// Fill in code to declare a structure called taxPayer that has three

// members: taxRate, income, and taxes — each of type float

int main()

{

// Fill in code to define an array named citizen which holds

// 5 taxPayers structures

cout << fixed << showpoint << setprecision(2);

cout << "Please enter the annual income and tax rate for 5 tax payers: ";

cout << endl << endl << endl;

for(int count = 0;count < 5;count++)

{

cout << "Enter this year's income for tax payer " << (count + 1);

cout << ": ";

// Fill in code to read in the income to the appropriate place

cout << "Enter the tax rate for tax payer # " << (count + 1);

cout << ": ";

// Fill in code to read in the tax rate to the appropriate place

// Fill in code to compute the taxes for the citizen and store it

// in the appropriate place

cout << endl;

}

208 LESSON SET 11 Structures and Abstract Data Types

LM_Chp11.qxd 4/24/03 12:46 PM Page 208

cout << "Taxes due for this year: " << endl << endl;

// Fill in code for the first line of a loop that will output the

// tax information

{

cout << "Tax Payer # " << (index + 1) << ": " << "$ "

<< citizen[index].taxes << endl;

}

return 0;

}

Exercise 1: Fill in the code as indicated by the comments in bold.

Exercise 2: In the previous code we have the following:

cout << "Tax Payer # " << (index+1) << ": " << "$ "

<< citizen[index].taxes << endl;

Why do you think we need (index+1) in the first line but index in the
second?

Sample Run:

Enter this year’s income for tax payer 1: 45000
Enter the tax rate for tax payer # 1: .19

Enter the tax rate for tax payer # 2: .23
Enter this year’s income for tax payer 3: 12000
Enter the tax rate for tax payer # 3: .01
Enter this year’s income for tax payer 4: 104000
Enter the tax rate for tax payer # 4: .30
Enter this year’s income for tax payer 5: 50000
Enter the tax rate for tax payer # 5: .22

Tax Payer # 1: $ 8550.00
Tax Payer # 2: $ 13800.00
Tax Payer # 3: $ 120.00
Tax Payer # 4: $ 31200.00
Tax Payer # 5: $ 11000.00

L E S S O N 1 1 B

LAB 11.4 Nested Structures

Bring in program nestedRect_struct.cpp from the Lab 11 folder. This code is
very similar to the rectangle program from Lab 11.1. However, this time you will
complete the code using nested structures. The code is shown below.

#include <iostream>

#include <iomanip>

using namespace std;

Lesson 11B 209

continues

LM_Chp11.qxd 4/24/03 12:46 PM Page 209

Enter this year’s income for tax payer 2: 60000

// This program uses a structure to hold data about a rectangle

// It calculates the area and perimeter of a box

// PLACE YOUR NAME HERE

// Fill in code to declare a structure named dimensions that

// contains 2 float members, length and width

// Fill in code to declare a structure named rectangle that contains

// 3 members, area, perimeter, and sizes. area and perimeter should be

// floats, whereas sizes should be a dimensions structure variable

int main()

{

// Fill in code to define a rectangle structure variable named box.

cout << "Enter the length of a rectangle: ";

// Fill in code to read in the length to the appropriate location

cout << "Enter the width of a rectangle: ";

// Fill in code to read in the width to the appropriate location

cout << endl << endl;

// Fill in code to compute the area and store it in the appropriate

// location

// Fill in code to compute the perimeter and store it in the

// appropriate location

cout << fixed << showpoint << setprecision(2);

cout << "The area of the rectangle is " << box.attributes.area << endl;

cout << "The perimeter of the rectangle is " << box.attributes.perimeter

<< endl;

return 0;

}

Exercise 1: Fill in the code as indicated by the comments in bold.

Exercise 2: Modify the program above by adding a third structure named
results which has two members area and perimeter. Adjust the rectan-
gle structure so that both of its members are structure variables.

Exercise 3: Modify the program above by adding functions that compute the
area and perimeter. The structure variables should be passed as arguments
to the functions.

210 LESSON SET 11 Structures and Abstract Data Types

LM_Chp11.qxd 4/24/03 12:46 PM Page 210

Sample Run:

Enter the length of a rectangle: 9
Enter the width of a rectangle: 6
The area of the rectangle is 54.00
The perimeter of the rectangle is 30.00

LAB 11.5 Student Generated Code Assignments

Option 1: Re-write Sample Program 11.2 so that it works for an array of
structures. Write the program so that it compares 6 circles. You will need
to come up with a new way of determining which circle’s center is closest
to the origin.

Option 2: Write a program that uses a structure to store the following informa-
tion for a particular month at the local airport:

Total number of planes that landed
Total number of planes that departed
Greatest number of planes that landed in a given day that month
Least number of planes that landed in a given day that month

The program should have an array of twelve structures to hold travel information
for the entire year. The program should prompt the user to enter data for each
month. Once all data is entered, the program should calculate and output the aver-
age monthly number of landing planes, the average monthly number of depart-
ing planes, the total number of landing and departing planes for the year, and the
greatest and least number of planes that landed on any one day (and which
month it occurred in).

Lesson 11B 211

LM_Chp11.qxd 4/24/03 12:46 PM Page 211

LM_Chp11.qxd 4/24/03 12:46 PM Page 212

L E S S O N S E T

Advanced File Operations

PURPOSE 1. To review the basic concept of files

2. To understand the use of random access files

3. To understand and use various types of files (binary and text)

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

2. Students should complete the Pre-lab Writing Assignment before coming to lab.

3. In the lab, students should complete labs assigned to them by the instructor.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment 20 min. 214

Pre-lab Writing Assignment Pre-lab reading 10 min. 231

LESSON 12A

Lab 12.1
Introduction to Files General understanding 15 min. 231
(Optional) of basic I/O

Lab 12.2
Files as Parameters and Understanding of get 20 min. 233
Character Data function and parameters

Lab 12.3
Binary Files and the Completion of all 30 min. 235
write Function previous labs

LESSON 12B

Lab 12.4
Random Access Files Completion of all 20 min. 238

previous labs

Lab 12.5
Student Generated Code Completion of all 30 min. 240
Assignments previous labs

12

213

LM_Chp12.qxd 4/24/03 12:47 PM Page 213

P R E - L A B R E A D I N G A S S I G N M E N T

Review of Text Files

Chapter three introduced the basic use of files for input and output. We briefly
review those concepts in this section.

A file is a collection of information stored (usually) on a disk. Files, just like vari-
ables, have to be defined in the program. The data type of a file depends on
whether it is used as an input file, output file, or both. Output files have a data
type called ofstream, input files have a data type of ifstream, and files used as
both have the data type fstream. We must add the #include <fstream> direc-
tive when using files.

Examples:

ofstream outfile; // defining outfile as an output file

ifstream infile; // defining infile as an input file

fstream datafile; // defining datafile to be both an input and

// output file

After their definition, files must still be opened, used (information stored to or data
read from the file), and then closed.

Opening Files

A file is opened with the open function. This ties the logical name of the file that
is used in the definition to the physical name of the file used in the secondary
storage device (disk). The statement infile.open("payroll.dat"); opens the
file payroll.dat and lets the program know that infile is the name by which
this file will be referenced within the program. If the file is not located in the same
directory as the C++ program, the full path (drive, etc.) MUST be indicated:
infile.open("a:\\payroll.dat"); This tying of the logical name infile with
the physical name payroll.dat means that wherever infile is used in the
program, data will be read from the physical file payroll.dat. A program should
check to make sure that the physical file exists. This can be done by a conditional
statement.

Example:
ifstream infile;

infile.open("payroll.dat");

if (!infile)

{

cout << Error opening file. It may not exist were indicated.\n;

return 1;

}

In the previous example, return 1 is used as an indicator of an abnormal occur-
rence. In this case the file in question can not be found.

214 LESSON SET 12 Advanced File Operations

LM_Chp12.qxd 4/24/03 12:47 PM Page 214

Pre-Lab Reading Assignment 215

Reading from a File

Files have an “invisible” end of line marker at the end of each line of the file. Files
also have an invisible end of file marker at the end of the file. When reading from
an input file within a loop, the program must be able to detect that marker as the
sentinel data (data that meets the condition to end the loop). There are several
ways to do this.

Sample Program 12.1:

#include <fstream>

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

ifstream infile; // defining an input file

ofstream outfile; // defining an output file

infile.open("payroll.dat");

// This statement opens infile as an input file.

// Whenever infile is used, data from the file payroll.dat

// will be read.

outfile.open("payment.out");

// This statement opens outfile as an output file.

// Whenever outfile is used, information will be sent

// to the file payment.out

int hours; // The number of hours worked

float payRate; // The rate per hour paid

float net; // The net pay

if (!infile)

{

cout << "Error opening file.\n";

cout << "Perhaps the file is not where indicated.\n";

return 1;

}

outfile << fixed << setprecision(2);

outfile << "Hours Pay Rate Net Pay" << endl;

infile >> hours; // priming the read

while (infile)

{

infile >> payRate;

net = hours * payRate;

continues

LM_Chp12.qxd 4/24/03 12:47 PM Page 215

216 LESSON SET 12 Advanced File Operations

outfile << hours << setw(10) << "$ " << setw(6)

<< payRate << setw(5) << "$ " << setw(7)

<< net << endl;

infile >> hours;

}

infile.close();

outfile.close();

return 0;

}

Notice the statement outfile << fixed << setprecision(2); in the above pro-
gram. This shows that the format procedures learned for cout can be used for out-
put files as well. Remember that setw(x) can be used as long as the iomanip
header file is included.

This program assumes that a data file exists and contains an undetermined
number of records with each record consisting of two data values, hours and
payRate. Suppose the input data file (payroll.dat) contains the following:

40 10.00

30 6.70

50 20.00

The program will produce the following output file (payment.out).

Hours Pay Rate Net Pay
40 $ 10.00 $ 400.00
30 $ 6.70 $ 201.00
50 $ 20.00 $1000.00

The input file contains data for one employee on each line. Each time through
the while loop, information is processed for one employee. The loop executes
the same number of times as there are lines (employee records in this case) in
the data file. Since there are two items of data for each line (hours and payRate),
these items are read in each time through the loop. Notice that one of the input
variables was input before the while loop. This is called “priming the read.”
Input can be thought of as a stream of values taken one at a time. Before the while
loop condition can be tested, there has to be something in that stream. We prime
the read by reading in at least one variable before the loop. Observe that the state-
ment infile >> hours; is given twice in the program: once before the input
loop and as the last statement in the loop. The other item, payRate, is read in
at the very beginning of the loop. This way each variable is read every time
through the loop. Also notice that the heading of the output file is printed out-
side the loop before it is executed.

There are other ways of determining when the end of the file is reached. The
eof() function reports when the end of a file is encountered. The loop in Sample
Program 12.1 can be replaced with the following:

infile >> hours;

while (!infile.eof())

{

LM_Chp12.qxd 4/24/03 12:47 PM Page 216

Pre-Lab Reading Assignment 217

infile >> payRate;

net = hours * payRate;

outfile << hours << setw(10) << "$ " << setw(6) << payRate << setw(5)

<< "$ " << setw(7) << net << endl;

infile >> hours;

}

In addition to checking to see if a file exists, we can also check to see if it has
any data in it. The following code checks first if the file exists and then if it is
empty.

inData.open("sample2.dat");

if(!inData)

cout << "file does not exist" << endl;

cout << "File is empty" << endl;

else

//rest of program

The peek function actually looks ahead in the file for the next data item, in this
case to determine if it is the end of file marker. ch must be defined as char
data type.

Since the peek function looks “ahead” for the next data item, it can be used to
test for end of file in reading values from a file within a loop without priming
the read.

The following program accomplishes the same thing as Sample Program 12.1 with-
out priming the read. The portions in bold differ from Sample Program 12.1.

Sample Program 12.2:

#include <fstream>

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

ifstream infile; // defining an input file

ofstream outfile; // defining an output file

infile.open("payroll.dat");

// This statement opens infile as an input file.

// Whenever infile is used, data from the file payroll.dat

// will be read.

outfile.open("payment.out");

// This statement opens outfile as an output file.

continues

LM_Chp12.qxd 4/24/03 12:47 PM Page 217

else if((else if (inData.peek()) == EOF)

218 LESSON SET 12 Advanced File Operations

// Whenever outfile is used, information will be sent

// to the file payment.out

int hours; // The number of hours worked

float payRate; // The rate per hour paid

float net; // The net pay

char ch; // ch is used to hold the next value

// (read as character) from the file

if (!infile)

{

cout << "Error opening file.\n";

cout << "Perhaps the file is not where indicated.\n";

return 1;

}

outfile << fixed << setprecision(2);

outfile << "Hours Pay Rate Net Pay" << endl;

while ((ch = infile.peek()) != EOF)

{

infile >> hours;

infile >> payRate;

net = hours * payRate;

outfile << hours << setw(10) << "$ " << setw(6)

<< payRate << setw(5) << "$ " << setw(7)

<< net << endl;

}

infile.close();

outfile.close();

return 0;

}

Output Files

Output files are opened the same way: outfile.open("payment.out").
Whenever the program writes to outfile, the information will be placed in the
physical file payment.out. Notice that the program generates a file stored in the
same location as the source file. The user can indicate a different location for the
file to be stored by indicating the full path (drive, etc.).

LM_Chp12.qxd 4/24/03 12:47 PM Page 218

Pre-Lab Reading Assignment 219

Files Used for Both Input and Output

A file can be used for both input and output. The fstream data type, which is used
for files that can handle both input and output, must have a file access flag as
an argument to the open function so that the mode, input or output, can be
determined. There are several access flags that are used to indicate the use of the
file. The following chart lists frequently used access flags.

Flag mode Meaning

ios::in Input mode. The file is used for “reading” information. If
the file does not exist, it will not be created.

ios::out Output mode. Information is written to the file. If the file
already exists, its contents will be deleted.

ios::app Append mode. If the file exists, its contents are preserved
and all output is written to the end of the file. If it does
not exist then the file will be created. Notice how this
differs from ios::out.

ios::binary Binary mode. Information is written to or read from in
pure binary format (discussed later in this chapter).

Example:

#include <fstream>

using namespace std;

int main()

{

fstream test ("grade.dat", ios::out)

// test is defined as an fstream file first used for output

// ios::out is the file access flag

// code of the program goes here

// the code will put values in the test file

test.close(); // close the file as an output file

test.open("grade.dat", ios::in)

// the same file is reopened now as an input file

// ios::in is the file access flag

// other code goes here

test.close(); // close the file

}

LM_Chp12.qxd 4/24/03 12:47 PM Page 219

220 LESSON SET 12 Advanced File Operations

In the following example, we check for a file’s existence before opening it. We
first attempt to open the file for input. If the file does not exist, then the open oper-
ation fails and we open it as an output file.

Example:

fstream dataFile;

dataFile.open("grades.txt", ios::in);

if (dataFile.fail())

// The fail directive indicates the file did not open

// since it does not exist

{

// The file does not exist, so create it.

dataFile.open("grades.txt", ios::out);

// file is processed here: data sent to the file

}

else // the file already exists.

{

cout << "The file grades.txt already exists. \n";

// process file here

dataFile.close();

}

Just as cin >> is used to read from the keyboard and cout << is used to write
to the screen, filename >> is used to read from the file filename and filename <<
is used to write to the file filename.

Closing a File

Files should be closed before the program ends to avoid corrupting the file and/
or losing valuable data.

infile.close();

outfile.close();

dataFile.close();

Passing Files as Parameters to Functions

Files can be passed as parameters just like variables. Files are always passed by
reference. The & symbol must be included after the data type in the function
heading and prototype.

Example:
void GetData(ifstream& infile, ofstream& outfile); // prototype of function

// with files as parameters

void GetData(ifstream& infile, ofstream& outfile) // heading of function with

// files as parameters

LM_Chp12.qxd 4/24/03 12:47 PM Page 220

Pre-Lab Reading Assignment 221

Review of Character Input

Chapter 10 introduced the basics of characters and strings. We briefly review
those concepts since they apply to files as well.

Recall that each file has an end of line marker for each line as well as the end
of file marker at the end of the file. Whenever whitespace (blanks, newlines,
controls, etc.) is part of a file, a problem exists with the traditional >> operator
in inputting character data. When reading input characters into a string object, the
>> operator skips any leading whitespace. It then reads successive characters
into the character array, stopping at the first trailing whitespace character (which
is NOT consumed, but rather which remains as the next character to be read in
the file). The >> operator also takes care of adding the null character to the end
of the string. Stopping at the first trailing whitespace creates a problem for names
containing spaces. A program reading first names into some string variable (array
of characters) has a problem reading a name like Mary Lou since it has a blank
space in it. The blank space between Mary and Lou causes the input to stop
when using the >> operator. The get function can be used to input such strings.

infile.get(firstname, 20);

The get function does NOT skip leading whitespace characters but rather con-
tinues to read characters until it either has read, in the example above, 19 char-
acters or it reaches the newline character \n (which it does NOT consume).
Recall from Lesson Set 10 that the last space is reserved for the null character.

Since the get function does not consume the end of line character, there
must be something done to consume it so that a new line can be read.

Example: Given the following data file

Mary Lou <eol>

Becky <eol>

Debbie <eol>

<eof>

Note: Both the <eol> and <eof> are NOT visible to the programmer or user.
There are several options for reading and printing this data.

char dummy; // created to read the end of line character

char firstname[80]; // array of characters for the first name

outfile << "Name " << endl;

infile.get(firstname,80); // priming the read inputs the first name

while(infile)

{

infile.get(dummy); // reads the end of line character into dummy

outfile << firstname << endl; // outputs the name

infile.get(firstname,80); // reads the next name

}

In the above example, dummy is used to consume the end of line character.
input.get(firstname,80); reads the string Mary Lou and stops just before read-
ing the <eol> end of line character. The infile.get(dummy) gets the end of line
character into dummy.

Another way to do this is with the ignore function, which reads characters until
it encounters the specific character it has been instructed to look for or until it has

LM_Chp12.qxd 4/24/03 12:47 PM Page 221

222 LESSON SET 12 Advanced File Operations

skipped the allotted number of characters, whichever comes first. The statement
infile.ignore(81,'\n') skips up to 81 characters stopping if the new line '\n'
character is encountered. This newline character IS consumed by the function, and
thus there is no need for a dummy character variable.

Example:
char firstname[80];

outfile << "Name " << endl;

infile.get(firstname,80);

{

infile.ignore(81,'\n'); // read and consume the end of line character

outfile << firstname << endl;

infile.get(firstname,80);

}

The following sample program shows how names with embedded whitespace
along with numeric data can be processed. Parts in bold indicate the changes from
Sample Program 12.2. Assume that the payroll.dat file has the following infor-
mation:

John Brown 40 10.00
Kelly Barr 30 6.70
Tom Seller 50 20.00

The program will produce the following information in payment.out:

Name Hours Pay Rate Net Pay
John Brown 40 $10.00 $ 400.00
Kelly Barr 30 $ 6.70 $ 201.00
Tom Seller 50 $20.00 $1000.00

Sample Program 12.3:

#include <fstream>

#include <iostream>

#include <iomanip>

using namespace std;

const int MAX_NAME = 11;

int main()

{

ifstream infile; // defining an input file

ofstream outfile; // defining an output file

infile.open("payroll.dat");

// This statement opens infile as an input file.

// Whenever infile is used, data from the file payroll.dat

// will be read.

LM_Chp12.qxd 4/24/03 12:47 PM Page 222

while(!infile.fail())

Pre-Lab Reading Assignment 223

outfile.open("payment.out");

// This statement opens outfile as an output file.

// Whenever outfile is used, information will be sent

// to the file payment.out

int hours; // The number of hours worked

float payRate; // The rate per hour paid

float net; // The net pay

char ch; // ch is used to hold the next value

// (read as character) from the file

char name[MAX_NAME]; // array of characters for the name of

// a student, with at most 10 characters

if (!infile)

{

cout << "Error opening file.\n";

cout << "Perhaps the file is not where indicated.\n";

return 1;

}

outfile << fixed << setprecision(2);

outfile << "Name Hours Pay Rate Net Pay" << endl;

while ((ch = infile.peek()) != EOF) // no need to prime the read

{

infile.get(name,MAX_NAME); // gets names with blanks

infile >> hours;

infile >> payRate;

infile.ignore(81,'\n'); // ignores the rest of the line

// and consumes end of line marker

net = hours * payRate;

outfile << name << setw(10) << hours << setw(10) << "$ "

<< setw(6) << payRate << setw(5) << "$ " << setw(7)

<< net << endl;

}

infile.close();

outfile.close();

return 0;

}

LM_Chp12.qxd 4/24/03 12:47 PM Page 223

224 LESSON SET 12 Advanced File Operations

Another way to read in lines containing whitespace characters is with the getline
member function.

Example:

char firstName[80];

outfile << "Name " << endl;

infile.getline(firstName,81);

while (infile)

{

outfile << firstName << endl;

intfile.getline(firstName,81);

}

Binary Files

So far all the files we have talked about have been text files, files formatted as
ASCII text.1 Even the numbers written to a file with the << operator are changed
to ASCII text. ASCII is a code that stores every datum (letter of the alphabet,
digit, punctuation mark, etc.) as a character with a unique number. Although
ASCII text is the default method for storing information in files, we can specify
that we want to store data in pure binary format by “opening” a file in binary mode
with the ios::binary flag. The write member function is then used to write
binary data to the file. This method is particularly useful for transferring an entire
array of data to a file. Binary files are efficient since they store everything as 1s
or 0s rather than as text.

Example:
fstream test("grade.dat", ios::out | ios::binary); // This defines and opens

// the file test as an

// output binary file

int grade[arraysize] = {98, 88, 78, 77, 67, 66, 56, 78, 98, 56}; // creates and

// initializes

// an integer

// array

test.write((char*)grade, sizeof(grade)); // write all values of array to file

test.close(); // close the file

test.write((char*)grade, sizeof(grade)); in the above example calls the
write function. The name of the file to be written to is test. The first argument
is a character pointer pointing to the starting address of memory, in this case to
the beginning of the grade array. The second argument is the size in bytes of the
item written to the file. sizeof is a function that determines the size.

1 Or some other alphanumberic code.

LM_Chp12.qxd 4/24/03 12:47 PM Page 224

The following sample program initializes an array and then places those val-
ues into a file as binary numbers. The program then adds 10 to each element of
the array and prints those values to the screen. Finally the program reads the val-
ues from the same file and prints them. These values are the original numbers.
Study the program and its comments very carefully.

Sample Program 12.4:

#include <fstream>

#include <iostream>

using namespace std;

const int ARRAYSIZE = 10;

int main()

{

fstream test("grade.dat", ios::out | ios::binary);

// note the use of | to separate file access flags

int grade[ARRAYSIZE] = {98,88,78,77,67,66,56,78,98,56};

int count; // loop counter

test.write((char*)grade, sizeof(grade));

// write values of array to file

test.close(); // close file

// now add 10 to each grade

cout << "The values of grades with 10 points added\n";

for (count =0; count < ARRAYSIZE; count++)

{

grade[count] = grade[count] + 10;

// this adds 10 to each elemnt of the array

cout << grade[count] << endl;

// write the new values to the screen

}

test.open("grade.dat", ios::in);

// reopen the file but now as an input file

test.read((char*) grade, sizeof(grade));

/* The above statement reads from the file test and places

the values found into the grade array. As with the write

function, the first argument is a character pointer even

though the array itself is an integer. It points to the

starting address in memory where the file information is to

be transferred

*/

Pre-Lab Reading Assignment 225

continues

LM_Chp12.qxd 4/24/03 12:47 PM Page 225

226 LESSON SET 12 Advanced File Operations

cout << "The grades as they were read into the file” << endl;

for (count =0; count < ARRAYSIZE; count++)

{

cout << grade[count] << endl;

// write the original values to the screen

}

test.close();

return 0;

}

The output to the screen from this program is as follows:

The values of grades with 10 points added
108
98
88
87
77
76
66
88
108
66
The grades as they were read into the file
98
88
78
77
67
66
56
78
98
56

Files and Records

Files are often used to store records. A “field” is one piece of information and a
“record” is a group of fields that logically belong together in a unit.

Example: Name Test1 Test2 Final

Brown 89 97 88

Smith 99 89 97

Each record has four fields: Name, Test1, Test2, and Final. When records are
stored in memory, rather than in files, C++ structures provide a good way to
organize and store them.

struct Grades

{

char name[10];

int test1;

LM_Chp12.qxd 4/24/03 12:47 PM Page 226

int test2;

int final;

};

An identifier defined to be a Grades structure can hold one record.

The write function, mentioned in the previous section, can be used to write
records to a file.

fstream test("score.dat", ios::out|ios::binary);

Grades student; // defines a structure variable

// code that gets information into the student record

test.write((char *) &student, sizeof(student));

The test.write function used to write a record stored as a struct is similar to
the write function used for an array with one big difference. Notice the inclusion
of (&). Why is this necessary here and not when writing an array? In this exam-
ple we need to pass by reference which requires the (&) symbol. Arrays are
passed by pointer. The following sample program takes records from the user and
stores them into a binary file.

Sample Program 12.5:

#include <fstream>

#include <iostream>

#include <cctype> // for toupper function

using namespace std;

const int NAMESIZE = 31;

struct Grades // declaring a structure

{

char name[NAMESIZE];

int test1;

int test2;

int final;

};

int main()

{

fstream tests("score.dat", ios::out | ios::binary);

// defines tests as an output binary file

Grades student; // defines student as a record (struct)

char more; // used to determine if there is more input

do

{

cout << "Enter the following information" << endl;

cout << "Student’s name: ";

cin.getline(student.name,NAMESIZE);

Pre-Lab Reading Assignment 227

continues

LM_Chp12.qxd 4/24/03 12:47 PM Page 227

228 LESSON SET 12 Advanced File Operations

cout << "First test score :";

cin >> student.test1;

cin.ignore(); // ignore rest of line

cout << "Second test score: ";

cin >> student.test2;

cin.ignore();

cout << "Final test score: ";

cin >> student.final;

cin.ignore();

// write this record to the file

tests.write((char *) &student, sizeof(student));

cout << "Enter a y if you would like to input more data\n ";

cin >> more;

cin.ignore();

} while (toupper(more) == 'Y');

tests.close();

return 0;

}

Random Access Files

All the files studied thus far have performed sequential file access, which means
that all data is read or written in a sequential order. If the file is opened for input,
data is read starting at the first byte and continues sequentially through the file’s
contents. If the file is opened for output, bytes of data are written sequentially.
The writing usually begins at the beginning of the file unless the ios::app mode
is used, in which case data is written to the end of the file. C++ allows a program
to perform random file access, which means that any piece of data can be
accessed at any time. A cassette tape is an example of a sequential access medi-
um. To listen to the songs on a tape, one has to listen to them in the order they
were recorded or fast forward (reverse) through the tape to get to a particular song.
A CD has properties of a random access medium. One simply jumps to the track
where a song is located. It is not truly random access, however, since one can not
jump to the middle of a song.

There are two file stream member functions that are used to move the read/write
position to any byte in the file. The seekp function is used for output files and
seekg is used for input files.

Example:

dataOut.seekp(30L, ios::beg);

This instruction moves the marker position of the file called dataOut to 30 posi-
tions from the beginning of the file. The first argument, 30L (L indicates a long
integer), represents an offset (distance) from some point in the file that will be

LM_Chp12.qxd 4/24/03 12:47 PM Page 228

Pre-Lab Reading Assignment 229

used to move the read/write position. That point in the file is indicated by the sec-
ond argument (ios::beg). This access flag indicates that the offset is calculated
from the beginning of the file. The offset can be calculated from the end
(ios::end) or from the current (ios::cur) position in the file.

If the eof marker has been set (which means that the position has reached the
end of the file), then the member function clear must be used before seekp or
seekg is used.

Two other member functions may be used for random file access: tellp and
tellg. They return a long integer that indicates the current byte of the file’s
read/write position. As expected, tellp is used to return the write position of an
output file and tellg is used to return the read position of an input file.

Assume that a data file letterGrades.txt has the following single line of infor-
mation:

ABCDEF

Marker positions always begin with 0. The mapping of the characters to their posi-
tion is as follows:

A B C D E F
0 1 2 3 4 5

The following sample program demonstrates the use of seekg and tellg.

Sample Program 12.6:

#include <iostream>

#include <fstream>

#include <cctype>

using namespace std;

int main()

{

fstream inFile("letterGrades.txt", ios::in);

long offset; // used to hold the offset

// of the read position from

// some point

char ch; // holds character read at some

// position in the file

char more; // used to indicate if more information

// is to be given

do

{

cout << "The read position is currently at byte "

<< inFile.tellg() << endl;

continues

LM_Chp12.qxd 4/24/03 12:47 PM Page 229

230 LESSON SET 12 Advanced File Operations

// This prints the current read position (found by the tellg

// function)

cout << "Enter an offset from the beginning of the file: ";

cin >> offset;

inFile.seekg(offset, ios::beg);

// This moves the position from the beginning of the file.

// offset contains the number of bytes that the read position

// will be moved from the beginning of the file

inFile.get(ch);

// This gets one byte of information from the file

cout << "The character read is " << ch << endl;

cout << "If you would like to input another offset enter a Y"

<< endl;

cin >> more;

inFile.clear();

// This clears the file in case the eof flag was set

} while (toupper(more) == 'Y');

inFile.close();

return 0;

}

Sample Run:

The read position is currently at byte 0
Enter an offset from the beginning of the file: 2
The character read is C
If you would like to input another offset enter a Y: y
The read position is currently at byte 3
Enter an offset from the beginning of the file: 0
The character read is A
If you would like to input another offset enter a Y: y
The read position is currently at byte 1
Enter an offset from the beginning of the file: 5
The character read is F
If you would like to input another offset enter a Y: n

CAUTION: If you enter an offset that goes beyond the data stored, it prints the previous
character offset.

LM_Chp12.qxd 4/24/03 12:47 PM Page 230

Lesson 12A 231

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. The member function moves the read position of a file.

2. Files that will be used for both input and output should be defined as

data type.

3. The member function returns the write position of a file.

4. The ios:: file access flag indicates that output to the file will
be written to the end of the file.

5. files are files that do not store data as ASCII characters.

6. The member function moves the write position of a file.

7. The function can be used to send an entire record or array
to a binary file with one statement.

8. The >> operator any leading whitespace.

9. The function “looks ahead” to determine the next data value
in an input file.

10. The and functions do not skip leading
whitespace characters.

L E S S O N 1 2 A

LAB 12.1 Introduction to Files (Optional)

(This is a good exercise for those needing a review of basic file operations)

Retrieve program files.cpp from the Lab 12 folder. The code is as follows:

// This program uses hours, pay rate, state tax and fed tax to determine gross

// and net pay.

#include <fstream>

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

// Fill in the code to define payfile as an input file

float gross;

float net;

float hours;

float payRate;

float stateTax;

float fedTax;
continues

LM_Chp12.qxd 4/24/03 12:47 PM Page 231

cout << fixed << setprecision(2) << showpoint;

// Fill in the code to open payfile and attach it to the physical file

// named payroll.dat

// Fill in code to write a conditional statement to check if payfile

// does not exist.

{

cout << "Error opening file. \n";

cout << "It may not exist where indicated" << endl;

return 1;

}

cout << "Payrate Hours Gross Pay Net Pay"

<< endl << endl;

// Fill in code to prime the read for the payfile file.

// Fill in code to write a loop condition to run while payfile has more

// data to process.

{

payfile >> payRate >> stateTax >> fedTax;

gross = payRate * hours;

net = gross - (gross * stateTax) - (gross * fedTax);

cout << payRate << setw(15) << hours << setw(12) << gross

<< setw(12) << net << endl;

payfile >> // Fill in the code to finish this with the appropriate

// variable to be input

}

payfile.close();

return 0;

}

Exercise 1: Assume that the data file has hours, payRate, stateTax, and
fedTax on one line for each employee. stateTax and fedTax are given as
decimals (5% would be .05). Complete this program by filling in the code
(places in bold).

Exercise 2: Run the program. Note: the data file does not exist so you should
get the error message:

Error opening file.

It may not exist where indicated.

Exercise 3: Create a data file with the following information:

40 15.00 .05 .12
50 10 .05 .11
60 12.50 .05 .13

Save it in the same folder as the .cpp file. What should the data file name
be?

232 LESSON SET 12 Advanced File Operations

LM_Chp12.qxd 4/24/03 12:47 PM Page 232

Lesson 12A 233

Exercise 4: Run the program. Record the output here:

Exercise 5: Change the program so that the output goes to an output file called
pay.out and run the program. You can use any logical internal name you
wish for the output file.

Lab 12.2 Files as Parameters and Character Data

Retrieve program Grades.cpp and the data file graderoll.dat from the Lab 12
folder. The code is as follows:

#include // FILL IN DIRECTIVE FOR FILES

#include <iostream>

#include <iomanip>

using namespace std;

// This program reads records from a file. The file contains the

// following: student’s name, two test grades and final exam grade.

// It then prints this information to the screen.

const int NAMESIZE = 15;

const int MAXRECORDS = 50;

struct Grades // declares a structure

{

char name[NAMESIZE + 1];

int test1;

int test2;

int final;

};

typedef Grades gradeType[MAXRECORDS];

// This makes gradeType a data type

// that holds MAXRECORDS

// Grades structures.

// FIll IN THE CODE FOR THE PROTOTYPE OF THE FUNCTION ReadIt

// WHERE THE FIRST ARGUMENT IS AN INPUT FILE, THE SECOND IS THE

// ARRAY OF RECORDS, AND THE THIRD WILL HOLD THE NUMBER OF RECORDS

// CURRENTLY IN THE ARRAY.

continues

LM_Chp12.qxd 4/24/03 12:47 PM Page 233

234 LESSON SET 12 Advanced File Operations

int main()

{

ifstream indata;

indata.open("graderoll.dat");

int numRecord; // number of records read in

gradeType studentRecord;

if(!indata)

{

cout << "Error opening file. \n";

cout << "It may not exist where indicated" << endl;

return 1;

}

// FILL IN THE CODE TO CALL THE FUNCTION ReadIt.

// output the information

for (int count = 0; count < numRecord; count++)

{

cout << studentRecord[count].name << setw(10)

<< studentRecord[count].test1

<< setw(10) << studentRecord[count].test2;

cout << setw(10) << studentRecord[count].final << endl;

}

return 0;

}

//**

// readIt

//

// task: This procedure reads records into an array of

// records from an input file and keeps track of the

// total number of records

// data in: data file containing information to be placed in

// the array

// data out: an array of records and the number of records

//

//**

void readIt(// FILL IN THE CODE FOR THE FORMAL PARAMETERS AND THEIR

// DATA TYPES.

// inData, gradeRec and total are the formal parameters

// total is passed by reference)

{

total = 0;

inData.get(gradeRec[total].name, NAMESIZE);

while (inData)

{

LM_Chp12.qxd 4/24/03 12:47 PM Page 234

// FILL IN THE CODE TO READ test1

// FILL IN THE CODE TO READ test2

// FILL IN THE CODE TO READ final

total++; // add one to total

// FILL IN THE CODE TO CONSUME THE END OF LINE

// FILL IN THE CODE TO READ name

}

}

Exercise 1: Complete the program by filling in the code (areas in bold). This
problem requires that you study very carefully the code and the data file
already written to prepare you to complete the program. Notice that in the
data file the names occupy no more than 15 characters. Why?

Exercise 2: Add another field called letter to the record which is a character
that holds the letter grade of the student. This is based on the average of
the grades as follows: test1 and test2 are each worth 30% of the grade
while final is worth 40% of the grade. The letter grade is based on a 10
point spread. The code will have to be expanded to find the average.

90–100 A
80–89 B
70–79 C
60–69 D
0–59 F

L E S S O N 1 2 B

LAB 12.3 Binary Files and the write Function

Retrieve program budget.cpp from the Lab 12 folder. The code is as follows:

// This program reads in from the keyboard a record of financial information

// consisting of a person’s name, income, rent, food costs, utilities and

// miscellaneous expenses. It then determines the net money

// (income minus all expenses)and places that information in a record

// which is then written to an output file.

#include <fstream>

#include <iostream>

#include <iomanip>

using namespace std;

Lesson 12B 235

continues

LM_Chp12.qxd 4/24/03 12:47 PM Page 235

const int NAMESIZE = 15;

struct budget //declare a structure to hold name and financial information

{

char name[NAMESIZE+1];

float income; // person's monthly income

float rent; // person's monthly rent

float food; // person's monthly food bill

float utilities; // person's monthly utility bill

float miscell; // person's other bills

float net; // person's net money after bills are paid

};

int main()

{

fstream indata;

ofstream outdata; // output file of

// student.

indata.open("income.dat", ios::out | ios::binary); // open file as binary

// output.

outdata.open("student.out"); // output file that we

// will write student

// information to.

outdata << left << fixed << setprecision(2); // left indicates left

// justified for fields

budget person; //defines person to be a record

cout << "Enter the following information" << endl;

cout << "Person's name: ";

cin.getline(person.name, NAMESIZE);

cout << "Income :";

cin >> person.income;

// FILL IN CODE TO READ IN THE REST OF THE FIELDS:

// rent, food, utilities AND miscell TO THE person RECORD

// find the net field

person.net = // FILL IN CODE TO DETERMINE NET INCOME (income - expenses)

// write this record to the file

// Fill IN CODE TO WRITE THE RECORD TO THE FILE indata (one instruction)

indata.close();

// FILL IN THE CODE TO REOPEN THE indata FILE, NOW AS AN INPUT FILE.

// FILL IN THE CODE TO READ THE RECORD FROM indata AND PLACE IT IN THE

// person RECORD (one instruction)

236 LESSON SET 12 Advanced File Operations

LM_Chp12.qxd 4/24/03 12:47 PM Page 236

Lesson 12B 237

// write information to output file

outdata << setw(20) << "Name" << setw(10) << "Income" << setw(10) << "Rent"

<< setw(10) << "Food" << setw(15) << "Utilities" << setw(15)

<< "Miscellaneous" << setw(10) << "Net Money" << endl << endl;

// FILL IN CODE TO WRITE INDIVIDUAL FIELD INFORMATION OF THE RECORD TO

// THE outdata FILE.(several instructions)

return 0;

}

Exercise 1: This program reads in a record with fields name, income, rent,
food, utilities, and miscell from the keyboard. The program computes
the net (income minus the other fields) and stores this in the net field. The
entire record is then written to a binary file (indata). This file is then
closed and reopened as an input file. Fill in the code as indicated by the
comments in bold.

Sample Run:

Enter the following information
Person’s Name: Billy Berry
Income: 2500
Rent: 700
Food: 600
Utilities: 400
Miscellaneous: 500

The program should write the following text lines to the output file
student.out.

Name Income Rent Food Utilities Miscellaneous Net Money

Billy Berry 2500.00 700.00 600.00 400.00 500.00 300.00

Exercise 2: Alter the program to include more than one record as input. Use an
array of records.

Sample Run:

Enter the following information
Person’s Name: Billy Berry
Income: 2500
Rent: 700
Food: 600
Utilities: 400
Miscellaneous: 500

Enter a Y if you would like to input more data
Y

Enter the following information
Person’s Name: Terry Bounds

LM_Chp12.qxd 4/24/03 12:47 PM Page 237

238 LESSON SET 12 Advanced File Operations

Income: 3000
Rent: 750
Food: 650
Utilities: 300
Miscellaneous: 400

Enter a Y if you would like to input more data
n
That’s all the information

The output file student.out should then have the following lines of text written
to it.

Name Income Rent Food Utilities Miscellaneous Net Money

Billy Berry 2500.00 700.00 600.00 400.00 500.00 300.00
Terry Bounds 3000.00 750.00 650.00 300.00 400.00 900.00

Lab 12.4 Random Access Files

Retrieve program randomAccess.cpp and the data file proverb.txt from the
Lab 12 folder. The code is as follows:

#include <iostream>

#include <fstream>

#include <cctype>

using namespace std;

int main()

{

fstream inFile("proverb.txt", ios::in);

long offset;

char ch;

char more;

do

{

// Fill in the code to write to the screen

// the current read position (with label)

cout << "Enter an offset from the current read position: ";

cin >> offset;

// Fill in the code to move the read position “offset” bytes

// from the CURRENT read position.

// Fill in the code to get one byte of information from the file

// and place it in the variable "ch".

cout << "The character read is " << ch << endl;

cout << "If you would like to input another offset enter a Y"

<< endl;

LM_Chp12.qxd 4/24/03 12:47 PM Page 238

Lesson 12B 239

cin >> more;

// Fill in the code to clear the eof flag.

} while (toupper(more) == 'Y');

inFile.close();

return 0;

}

Exercise 1: Fill in the code as indicated by the comments in bold.
The file proverb.txt contains the following information:

Now Is The Time fOr All GoOd Men to come to the aid of their Family

Sample Run:

The read position is currently at byte 0

Enter an offset from the current position: 4

The character read is I

If you would like to input another offset enter a Y y

The read position is currently at byte 5

Enter an offset from the current position: 2

The character read is T

If you would like to input another offset enter a Y y

The read position is currently at byte 8

Enter an offset from the current position: 6

The character read is e

If you would like to input another offset enter a Y y

The read position is currently at byte 15

Enter an offset from the current position: 44

The character read is r

If you would like to input another offset enter a Y y

The read position is currently at byte 60

Enter an offset from the current position: 8

The character read is r

If you would like to input another offset enter a Y n

Exercise 2: Why do you think that the character printed at the last run was
another r? What would you have to do to get a different letter after the
position is beyond the eof marker?

LM_Chp12.qxd 4/24/03 12:47 PM Page 239

240 LESSON SET 12 Advanced File Operations

Exercise 3: Change the program so that the read position is calculated from
the end of the file. What type of offsets would you need to enter to get
characters from the proverb? Do several sample runs with different
numbers to test your program.

LAB 12.5 Student Generated Code Assignments

Option 1: Write a program that will: 1) read an array of records from the
keyboard, 2) store this information to a binary file, 3) read from the binary
file back to the array of records, 4) store this information to a textfile. Left
justify the information for each field. Each record will consist of the
following fields:

first name 15 characters
last name 15 characters
street address 30 characters
city 20 characters
state 5 characters
zip long integer

You may assume a maximum of 20 records.
This assignment is very similar to the program found in Lab 12.3.

Sample Run:

Enter the following information
Person’s First Name: Billy
Person’s Last Name: Berry
Street: 205 Main Street
City: Cleveland
State: TX
Zip: 45679

Enter a Y if you would like to input more data
Y

Enter the following information
Person’s First Name: Sally
Person’s Last Name: Connely
Street: 348 Wiley Lane
City: San Francisco
State: Md
Zip: 54789

Enter a Y if you would like to input more data
n
That’s all the information

The output file contains the following:

First Name Last Name Street City State Zip Code

Billy Berry 205 Main Street Cleveland Tx 45679
Sally Connely 348 Wiley Lane San Francisco Md 54789

LM_Chp12.qxd 4/24/03 12:47 PM Page 240

Option 2: Write a program that will read the radii of circles. Use an array of
records where each record will have the radius of the circle read from the
keyboard and the diameter and area of the circle will be calculated by the
program. This information (radius, diameter and area) is stored in a binary
file. The information in the binary file is then read back into the records
and stored in a text output file. Left justify the information for each field.
Each record will consist of the following fields:

radius float
diameter float
area float

You may assume a maximum of 20 records. You may want to include the
cmath library.

You need to know the formulas for finding the area and circumference
of a circle.

This assignment is very similar to the program in Lab 12.3.

Sample Run:

Enter the following information:
Radius of circle: 5
Enter a Y if you would like to input more data
y

Enter the following information:
Radius of circle: 4
Enter a Y if you would like to input more data
y

Enter the following information:
Radius of circle: 7
Enter a Y if you would like to input more data
n

That’s all the information.

The output file contains the following:

Radius Area Circumference

5.00 78.54 31.42
4.00 50.27 25.13
7.00 153.94 43.98

Option 3: Bring in the file employee.in from Lab 12 folder. Write a program
that will read records from this file and store them in a binary file. That file
will then be used as input to create an output file of the information. The
data file contains employee information consisting of name, social security,
department ID, years employed, and salary. In addition to displaying the
information of each record, the program will also calculate the average
salary and years employed of all the records. This additional information is
stored in the same output file.

Lesson 12B 241

LM_Chp12.qxd 4/24/03 12:47 PM Page 241

Sample Data File:

Bill Tarpon 182460678 789 8 30600
Fred Caldron 456905434 789 10 40700
Sally Bender 203932239 790 8 50000
David Kemp 568903493 790 9 60000

The output file should look like this:

Name Social Security Department ID Years Employed Salary

Bill Tarpon 182460678 789 8 30600.00
Fred Caldron 456905434 789 10 40700.00
Sally Bender 203932239 790 8 50000.00
David Kemp 568903493 790 9 60000.00

The average number of years employed is 8

The average salary is $45325.00

242 LESSON SET 12 Advanced File Operations

LM_Chp12.qxd 4/24/03 12:47 PM Page 242

L E S S O N S E T

Introduction to Classes

PURPOSE 1. To introduce object-oriented programming

2. To introduce the concept of classes

3. To introduce the concept of constructors and destructors

4. To introduce arrays of objects

PROCEDURE 1. Students should read Chapter 13 of the text.

2. Students should read the Pre-lab Reading Assignment before coming to lab.

3. Students should complete the Pre-lab Writing Assignment before coming to lab.

4. In the lab, students should complete labs assigned to them by the instructor.

Approximate Check
completion Page when

Contents Pre-requisites time number done

Pre-lab Reading Assignment Chapter 13 of text 20 min. 244

Pre-lab Writing Assignment Pre-lab reading 10 min. 260

LESSON 13A

Lab 13.1
Square as a Class Basic understanding of 10 min. 261

structures and classes

Lab 13.2
Circles as a Class Completion of Pre-lab 40 min. 263

Reading Assignment

LESSON 13B

Lab 13.3
Arrays as Data Members Understanding of private 20 min. 265
of Classes data members of

classes and files

Lab 13.4
Arrays of Objects Understanding of 20 min. 267

classes

Lab 13.5
Student Generated Code Completion of all the 30 min. 269
Assignments previous labs

13

243

LM_Chp13.qxd 4/24/03 12:49 PM Page 243

P R E - L A B R E A D I N G A S S I G N M E N T

Introduction to Object-Oriented Programming

Up until now, we have been using the procedural programming method for writ-
ing all our programs. A procedural program has data stored in a collection of vari-
ables (or structures) and has a set of functions that perform certain operations.
The functions and data are treated as separate entities. Although operational,
this method has some serious drawbacks when applied to very large real-world
situations. Even though procedural programs can be modularized (broken into
several functions), in a large complex program the number of functions can
become overwhelming and difficult to modify or extend. This can create a lev-
el of complexity that is difficult to understand.

Object-Oriented Programming (OOP) mimics real world applications by
introducing classes which act as prototypes for objects. Objects are similar to
nouns which can simulate persons, places, or things that exist in the real world.
OOP enhances code reuse ability (use of existing code or classes) so time is not
used on “reinventing the wheel.”

Classes and objects are often confused with one another; however, there is
a subtle but important difference explained by the following example. A plaster
of Paris mold consists of the design of a particular figurine. When the plaster is
poured into the mold and hardened, we have the creation of the figurine itself.
A class is analogous to the mold, for it holds the definition of an object. The
object is analogous to the figurine, for it is an instance of the class. Classes and
structures are very similar in their construction. Object-oriented programming is
not learned in one lesson. This lab gives a brief introduction into this most impor-
tant concept of programming.

A class is a prototype (template) for a set of objects. An object can be
described as a single instance of a class in much the same way that a variable is
a single instance of a particular data type. Just as several figurines can be made
from one mold, many objects can be created from the same class. A class con-
sists of a name (its identity), its member data which describes what it is and its
member functions which describe what it does.1 Member data are analogous to
nouns since they act as entities. Member functions are analogous to verbs in that
they describe actions. A class is an abstract data type (ADT) which is a user
defined data type that combines a collection of variables and operations. For
example, a rectangle, in order to be defined, must have a length and width. In
practical terms we describe these as its member data (length, width). We also
describe a set of member functions that gives and returns values to and from the
member data as well as perform certain actions such as finding the rectangle’s
perimeter and area. Since many objects can be created from the same class, each
object must have its own set of member data.

As noted earlier, a class is similar to a structure except that classes encapsulate
(contain) functions as well as data.2 Functions and data items are usually designated

244 Introduction to Classes

1 In other object-oriented languages member functions are called methods and member data
are called attributes.
2 Although structures can contain functions, they usually do not, whereas classes always
contain them

LM_Chp13.qxd 4/24/03 12:49 PM Page 244

LESSON SET 13

as either private or public which indicates what can access them. Data and func-
tions that are defined as public can be directly accessed by code outside the
class, while functions and data defined as private can be accessed only by func-
tions belonging to the class. Usually, classes make data members private and
require outside access to them through member functions that are defined as
public. Member functions are thus usually defined as public and member
data as private.

The following example shows how a rectangle class can be defined in C++:

#include <iostream>

using namespace std;

// Class declaration (header file)

class Rectangle // Rectangle is the name of the class (its identity).

{

public:

// The following are labeled as public.

// Usually member functions are defined public

// and are used to describe what the class can do.

void setLength(float side_l);

// This member function receives the length of the

// Rectangle object that calls it and places that value in

// the member data called length.

void setWidth(float side_w);

// This member function receives the width of the Rectangle

// object that calls it and places the value in the member

// data called width.

float getLength();

// This member function returns the length of the Rectangle

// object that calls it.

float getWidth();

// This member function returns the width of the Rectangle

// object that calls it.

double findArea();

// This member function finds the area of the Rectangle object

// that calls it.

double findPerimeter();

// This member function finds the perimeter of the Rectangle

// object that calls it.

Pre-lab Reading Assignment 245

continues

LM_Chp13.qxd 4/24/03 12:49 PM Page 245

private:

// The following are labeled as private.

// Member data are usually declared private so they can

// ONLY be accessed by functions that belong to the class.

// Member data describe the attributes of the class

float length;

float width;

};

This example has six member functions. It has two member functions for each
private member data: setLength and getLength for the member data length
and setWidth and getWidth for the member data width. It is often the case that
a class will have both a set and a get member function for each of its private data
members. A set member function receives a value from the calling object and
places that value into the corresponding private member data. A get member
function returns the value of the corresponding private member data to the object
that calls it. In addition to set and get member functions, classes usually have oth-
er member functions that perform certain actions such as finding area and perime-
ter in the Rectangle class.

Client and Implementation Files

It is not necessary for someone to understand how a television remote control
works in order to use the remote to change the stations or the volume. The user
of the remote could be called a client that only knows how to use the remote
to accomplish a certain task. The details of how the remote control performs
the task are not necessary for the user to operate the remote. Likewise, an auto-
mobile is a complex mechanical machine with a simple interface that allows
users without any (or very little) mechanical knowledge to start, drive, and use
it for a variety of functions. Drivers do not need to know what goes on under the
hood. In the same way, a program that uses Rectangle does not need to know
the details of how its member functions perform their operations. The use of an
object (an instance of a class) is thus separated into two parts: the interface
(client file) which calls the functions and the implementation which contains
the details of how the functions accomplish their task.

An object not only combines data and functions, but also restricts other parts
of the program from accessing member data and the inner workings of member
functions. Having programs or users access only certain parts of an object is
called data hiding. The fact that the internal data and inner workings can be hid-
den from users makes the object more accessible to a greater number of programs.

Just like an automobile or a remote control, a piece of commercial software
is usually a complex entity developed by many individuals. OOP (Object-Oriented
Programming) allows programmers to create objects with hidden complex logic
that have simple interfaces which are easily understood and used. This allows
more sophisticated programs to be developed. Interfacing is a major concern
for software developers.

246 Introduction to Classes

LM_Chp13.qxd 4/24/03 12:49 PM Page 246

LESSON SET 13

User of an object Public
Interface Private Internal Data

(length, width)
Implementation of the member functions

Types of Objects

Objects are either general purpose or application-specific. General purpose
objects are designed to create a specific data type such as currency or date. They
are also designed to perform common tasks such as input verification and graph-
ical output. Application-specific objects are created as a specific limited operation
for some organization or task. A student class, for example, may be created for
an educational institution.

Implementations of Classes in C++

The class declaration is usually placed in the global section of a program or in a
special file (called a header file). As noted earlier, the class declaration acts very
much like a prototype or data type for an object. An object is defined much like
a variable except that it uses the class name as the data type. This definition cre-
ates an instance (actual occurrence) of the class. Implementation of the mem-
ber functions of a class are given either after the main function of the program
or in a separate file called the implementation file. Use of the object is usual-
ly in the main function, other specialized functions, or in a separate program file
called the client file.3

Creation and Use of Objects

Rectangle, previously described, is a class (prototype) and not an object (an
actual instance of the class). Objects are defined in the client file, main, or oth-
er functions just as variables are defined:

Rectangle box1,box2;

box1 and box2 are objects of class Rectangle.

box1 has its own length and width that are possibly different from the length
and width of box2.

To access a member function (method) of an object, we use the dot operator, just
as we do to access data members of structures. The name of the object is given first,
followed by the dot operator and then the name of the member function.

The following example shows a complete main function (or client file) that
defines and uses objects which call member functions.

int main()

{

Rectangle box1; // box1 is defined as an object of Rectangle class

Rectangle box2; // box2 is defined as another Rectangle class object

Pre-lab Reading Assignment 247

3 More will be given on header, implementation, and client files later in the lesson.

LM_Chp13.qxd 4/24/03 12:49 PM Page 247

box1.setLength(20); // This instruction has the object box1 calling the

// setLength member function which sets the member data

// length associated with box1 to the value of 20

box1.setWidth(5);

box2.setLength(9.5);// This instruction has the object box2 calling the

// setLength member function which sets the member data

// length associated with box2 to the value of 9.5

box2.setWidth(8.5);

cout << "The length of box1 is " << box1.getLength() << endl;

cout << "The width of box1 is " << box1.getWidth() << endl;

cout << "The area of box1 is " << box1.findArea() << endl;

cout << "The perimeter of box1 is " << box1.findPerimeter() << endl;

cout << "The length of box2 is " << box2.getLength() << endl;

cout << "The width of box2 is " << box2.getWidth() << endl;

cout << "The area of box2 is " << box2.findArea() << endl;

cout << "The perimeter of box2 is " << box2.findPerimeter() << endl;

return 0;

}

Since findArea and findPerimeter must have length and width before they
can do the calculation, an object must call setLength and setWidth first. The user
must remember to initialize both length and width by calling both set functions.
It is not good programming practice to assume that a user will do the necessary
initialization. Constructors (discussed later) solve this problem.

Implementation of Member Functions

As previously noted, the implementation of the member function can be hidden
from the users (clients) of the objects. However, they must be implemented by
someone, somewhere. The following shows the implementation of the Rectangle
member functions.

//***

// setLength

//

// task: This member function of the class Rectangle receives

// the length of the Rectangle object that calls it and

// places that value in the member data called length.

// data in: the length of the rectangle

// data out: none

//

//**

248 Introduction to Classes

LM_Chp13.qxd 4/24/03 12:49 PM Page 248

LESSON SET 13

void Rectangle::setLength(float side_l)

{

length = side_l;

}

//***

// setWidth

//

// task: This member function of the class Rectangle receives the

// the width of the Rectangle object that calls it and

// places that value in the member data called width.

// data in: the width of the rectangle

// data out: none

//

//**

void Rectangle::setWidth(float side_w)

{

width = side_w;

}

//***

// getLength

//

// task: This member function of the class Rectangle returns

// the length of the Rectangle object that calls it.

// data in: none

// data returned: length

//

//**

float Rectangle::getLength()

{

return length;

}

//***

// getWidth

//

// task: This member function of the class Rectangle returns

// the width of the Rectangle object that calls it.

// data in: none

// data returned: width

//

//**

Pre-lab Reading Assignment 249

continues

LM_Chp13.qxd 4/24/03 12:49 PM Page 249

float Rectangle:: getWidth()

{

return width;

}

//***

// findArea

//

// task: This member function of the class Rectangle

// calculates the area of the object that calls it.

// data in: none (uses the values of member data length &

// width)

// data returned: area

//

//**

double Rectangle::findArea()

{

return length * width;

}

//***

// findPerimeter

//

// task: This member function of the class Rectangle

// calculates the perimeter of the object that calls it

// data in: none (uses the values of member data length &

// width)

// data returned: perimeter

//

//**

double Rectangle::findPerimeter()

{

return ((2 * length) + (2 * width));

}

Notice that in the heading of each member function the name of the function is pre-
ceded by the name of the class to which it is a member followed by a double
colon. In the above example each name is preceded by Rectangle::. This is nec-
essary to indicate in which class the function is a member. There can be more
than one function with the same name associated with different classes. The :: sym-
bol is called the scope operator. It acts as an indicator of the class association.

Usually classes are declared in a header file, while member functions are
stored in an implementation file and objects are defined and used in a client
file. These files are often bound together in a project. Various development envi-
ronments have different means of creating and storing related files in a project.
All could be located in three different sections of the same file.

250 Introduction to Classes

LM_Chp13.qxd 4/24/03 12:49 PM Page 250

LESSON SET 13

Complete Program

The following code shows the class declaration, member functions (methods),
implementations and use (client) of the Rectangle class:

#include <iostream>

using namespace std;

//__

// Class declaration (header file)

class Rectangle // Rectangle is the name of the class

{

public:

// The member functions are labeled as public.

void setLength(float side_l);

// This member function receives the length of the

// Rectangle object that calls it and places that value in

// the member data called length.

void setWidth(float side_w);

// This member function receives the width of the Rectangle

// object that calls it and places the value in the member

// data called width.

float getLength();

// This member function returns the length of the Rectangle

// object that calls it.

float getWidth();

// This member function returns the width of the Rectangle

// object that calls it.

double findArea();

// This member function finds the area of the rectangle object

// that calls it.

double findPerimeter();

// This member function finds the perimeter of the rectangle

// object that calls it.

private:

// The following are labeled as private.

// Member data are usually declared private so they can

// ONLY be accessed by functions that belong to the class.

// Member data describe the attributes of the class

Pre-lab Reading Assignment 251

continues

LM_Chp13.qxd 4/24/03 12:49 PM Page 251

float length;

float width;

};

// __

// Client file

int main()

{

Rectangle box1; // box1 is defined as an object of Rectangle class

Rectangle box2; // box2 is defined as another Rectangle class object

box1.setLength(20); // This instruction has the object box1 calling the

// setLength member function which sets the member

// data length associated with box1 to the value

// of 20

box1.setWidth(5);

box2.setLength(30.5); // This instruction has the object box2 calling the

// setLength member function which sets the member

// data length associated with box2 to the value

// of 30.5

box2.setWidth(8.5);

cout << "The length of box1 is " << box1.getLength() << endl;

cout << "The width of box1 is " << box1.getWidth() << endl;

cout << "The area of box1 is " << box1.findArea() << endl;

cout << "The perimeter of box1 is " << box1.findPerimeter() << endl;

cout << "The length of box2 is " << box2.getLength() << endl;

cout << "The width of box2 is " << box2.getWidth() << endl;

cout << "The area of box2 is " << box2.findArea() << endl;

cout << "The perimeter of box2 is " << box2.findPerimeter() << endl;

return 0;

}

// __

// Implementation file

//***

// setLength

//

// task: This member function of the class Rectangle receives the

// the length of the Rectangle object that calls it and

// places that value in the member data called length.

// data in: the length of the rectangle

// data out: none

//

//**

252 Introduction to Classes

LM_Chp13.qxd 4/24/03 12:49 PM Page 252

LESSON SET 13

void Rectangle::setLength(float side_l)

{

length = side_l;

}

//***

// setWidth

//

// task: This member function of the class Rectangle receives the

// the width of the Rectangle object that calls it and

// places that value in the member data called width.

// data in: the width of the rectangle

// data out: none

//

//**

void Rectangle::setWidth(float side_w)

{

width = side_w;

}

//***

// getLength

//

// task: This member function of the class Rectangle returns

// the length of the Rectangle object that calls it.

// data in: none

// data returned: length

//

//**

float Rectangle::getLength()

{

return length;

}

//***

// getWidth

//

// task: This member function of the class Rectangle returns

// the width of the Rectangle object that calls it.

// data in: none

// data returned: width

//

//**

Pre-lab Reading Assignment 253

continues

LM_Chp13.qxd 4/24/03 12:49 PM Page 253

float Rectangle::getWidth()

{

return width;

}

//***

// findArea

//

// task: This member function of the class Rectangle

// calculates the area of the object that calls it.

// data in: none (uses the values of member data length &

// width)

// data returned: area

//

//**

double Rectangle::findArea()

{

return length * width;

}

//***

// findPerimeter

//

// task: This member function of the class Rectangle

// calculates the perimeter of the object that calls it.

// data in: none (uses the values of member data length & width)

// data returned: perimeter

//

//**

double Rectangle::findPerimeter()

{

return ((2 * length) + (2 * width));

}

Inline Member Functions

Sometimes the implementation of member functions is so simple that they can be
defined inside a class declaration. Such functions are called inline member func-
tions. In the Rectangle class, findArea and findPerimeter are so simple that
they can be defined in the class declaration as follows:

double findArea(){ return length * width; }

double findPerimeter() { return 2 * length + 2 * width; }

254 Introduction to Classes

LM_Chp13.qxd 4/24/03 12:49 PM Page 254

LESSON SET 13

Introduction to Constructors

As noted earlier, the methods (member functions) findArea and findPerimeter
must have the length and width before they can do any calculation. The user
must remember to initialize both length and width by calling both of these func-
tions. What happens if the user forgets? Suppose we call findArea without first
calling both setLength and setWidth. The function will try to find the area of a
rectangle that has no length or width. Thus, the creator of a class should never
rely on the user to initialize essential data.

C++ provides a mechanism, called a constructor, to guarantee the initial-
ization of an object. A constructor is a member function that is implicitly invoked
whenever a class instance is created (whenever an object is defined). A constructor
is unique from other member functions in two ways:

1. It has the same name as the class itself.

2. It does not have a data type (or the word void) in front of it. The only
purpose of the constructor is to initialize an object’s member data.

The following shows the Rectangle class using two constructors that set the val-
ues of length and width.

class Rectangle

{

public:

Rectangle(float side_l, float side_w);

// Constructor allowing a user to input the length and width

Rectangle();

// Constructor using default values for both length and width

void setLength(float side_l);

void setWidth(float side_w);

float getLength();

float getWidth();

double findArea();

double findPerimeter() ;

private:

float length;

float width;

};

This class includes two constructors, differentiated by their parameter lists. Recall
from Lesson Set 6.2 that two or more functions can have the same name as long
as their parameters differ in quantity or data type. The parameter-less construc-
tor (the second constructor in the above example) is the default constructor.
Like all member functions, constructors are defined in the implementation file (or
function definition section of a program). The reason for a default constructor is
explained in the next section.

Pre-lab Reading Assignment 255

LM_Chp13.qxd 4/24/03 12:49 PM Page 255

Constructor Definitions

The function definitions of the two constructors for the Rectangle class are as follows:
Rectangle::Rectangle(float side_l, float side_w)

{

length = side_l;

width = side_w;

}

Rectangle::Rectangle()

{

length = 1;

width = 1;

}

The first constructor allows the user to input a value for both length and width
at the same time that the object is defined (shown later in the lab). The second
constructor (the default constructor) sets both length and width to 1 whenever
the object is defined. Actually they could be set to anything that the creator of the
class wants to use as a default for an object of the class that is not initialized by
the user. With the use of these constructors, every object of class Rectangle will
have a value for both length and width. We still keep the two member functions
setLength and setWidth to allow the user to change the values of length and
width. We could create a third constructor that has just one parameter which
gives the value of length and uses the default value for width. If we create this
third constructor, however, we can not create a fourth constructor that gives the
value of width and use the default value for length. Why? We would have two
member functions with the same name and an identical parameter list in both data
type and number.

Invoking a Constructor

Although a constructor is a member function, it is never invoked (called) using
the dot notation. It is invoked when an object is defined.

Example: Rectangle box1(12,6);

Rectangle box2;

In this example, box1 is an object of Rectangle class that has length set to 12 and
width set to 6. Since it has two parameters, box1 activates the constructor that has
two parameters. The object box2 is defined with both length and width set to 1.
Since box2 has no parameters, it activates the default constructor.

Destructors

A destructor is a member function that is automatically called to destroy an
object. Just like constructors, a destructor has the same name as the class; how-
ever, it is preceded by a tilde (~). Destructors are used to free up memory when
the object is no longer needed. The destructor is automatically called when an
object of the class goes out of scope. This occurs when the function (such as main),
where the object is defined, ends. The following example shows how construc-
tors and destructors operate.

256 Introduction to Classes

LM_Chp13.qxd 4/24/03 12:49 PM Page 256

LESSON SET 13

Example:

#include <iostream>

using namespace std;

class Demo

{

public:

Demo(); // Default constructor

~Demo(); // Destructor

};

int main()

{

Demo demoObj; // demoObj is defined and invokes

// the default constructor that

// prints the message “The constructor has

// been invoked”

cout << "The program is now running" << endl;

return 0;

}

// Now that the main program is over, the object demoObj is no

// longer active. The destructor is invoked and the message

// "The destructor has been invoked" is printed.

//***

// The Default Constructor Demo

// Notice that constructors do not have to set member data

// This constructor prints a message that the constructor

// has been invoked.

//***

Demo::Demo()

{

cout << "The constructor has been invoked" << endl;

}

//***

// The Destructor Demo

// Notice that destructors do not have to print anything but

// this destructor prints the message "The destructor has been

// invoked." The primary purpose of destructors is to free

// memory space once an object is no longer needed.

//**

Demo::~Demo()

{

cout << "The destructor has been invoked" << endl;

}

Pre-lab Reading Assignment 257

LM_Chp13.qxd 4/24/03 12:49 PM Page 257

What order do you think the three cout statements will be executed?
Note that a class can have only one default constructor and one destructor.

Arrays of Objects

Arrays can also contain objects of a class. For example, we could have an array
of Rectangle objects.

Example:

Rectangle box[4]; // box is defined as an array of Rectangle objects

This statement makes an array of 4 elements, each consisting of an object of the
Rectangle class.

Since this class has a default constructor, the default values are assigned to
each element (object) of the array. The length and width for each of the objects
in the box array are equal to 1 since these are the default values assigned by the
default constructor.

The following program demonstrates the use of an array of objects:

#include <iostream>

using namespace std;

class Rectangle

{

public:

// Constructor allowing a user to input the length and width

Rectangle(float side_l, float side_w);

Rectangle(); // Default constructor

~Rectangle(); // Destructor

void setLength(float side_l);

void setWidth(float side_w);

float getLength();

float getWidth();

double findArea();

double findPerimeter() ;

private:

float length;

float width;

};

const int NUMBEROFOBJECTS = 4;

int main()

{

258 Introduction to Classes

LM_Chp13.qxd 4/24/03 12:49 PM Page 258

LESSON SET 13

Rectangle box[NUMBEROFOBJECTS]; // Box is defined as an array of

// Rectangle objects

for (int pos = 0; pos < NUMBEROFOBJECTS; pos++)

{

cout << "Information for box number " << pos + 1 << endl << endl;

cout << "The length of the box is " << box[pos].getLength()

<< endl;

cout << "The width of the box is " << box[pos].getWidth() << endl;

cout << "The area of the box is " << box[pos].findArea() << endl;

cout << "The perimeter of the box is " << box[pos].findPerimeter()

<< endl << endl;

}

return 0;

}

void Rectangle::setLength(float side_l)

{

length = side_l;

}

void Rectangle::setWidth(float side_w)

{

width = side_w;

}

float Rectangle::getLength()

{

return length;

}

float Rectangle:: getWidth()

{

return width;

}

double Rectangle::findArea()

{

return length * width;

}

double Rectangle::findPerimeter()

{

Pre-lab Reading Assignment 259

continues

LM_Chp13.qxd 4/24/03 12:49 PM Page 259

return ((2 * length) + (2 * width));

}

Rectangle::Rectangle(float side_l, float side_w)

{

length = side_l;

width = side_w;

}

Rectangle::Rectangle()

{

length = 1;

width = 1;

}

Rectangle::~Rectangle()

{

}

The output will be the same for each box because each has been initialized to the
default values for length and width.

PRE-LAB WRITING ASSIGNMENT

Fill–in-the-Blank Questions

1. A(n) is used in C++ to guarantee the initialization of
a class instance.

2. A constructor has the name as the class itself.

3. Member functions are sometimes called in other object-
oriented languages.

4. A(n) is a member function that is automatically
called to destroy an object.

5. To access a particular member function, the code must list the object name
and the name of the function separated from each other by a

.

6. A constructor has no parameters.

7. A ____________________ precedes the destructor name in the declaration.

8. A(n) ____________________ member function has its implementation
given in the class declaration.

9. In an array of objects, if the default constructor is invoked, then it is applied
to ____________________ object in the array.

10. A constructor is a member function that is ____________________ invoked
whenever a class instance is created.

260

LM_Chp13.qxd 4/24/03 12:49 PM Page 260

Introduction to ClassesLESSON SET 13

L E S S O N 1 3 A

Lab 13.1 Squares as a Class

Retrieve program square.cpp from the Lab 13 folder. The code is as follows:

// This program declares the Square class and uses member functions to find

// the perimeter and area of the square

#include <iostream>

using namespace std;

// FILL IN THE CODE TO DECLARE A CLASS CALLED Square. TO DO THIS SEE

// THE IMPLEMENTATION SECTION.

int main()

{

Square box; // box is defined as an object of the Square class

float size; // size contains the length of a side of the square

// FILL IN THE CLIENT CODE THAT WILL ASK THE USER FOR THE LENGTH OF THE

// SIDE OF THE SQUARE. (This is stored in size)

// FILL IN THE CODE THAT CALLS SetSide.

// FILL IN THE CODE THAT WILL RETURN THE AREA FROM A CALL TO A FUNCTION

// AND PRINT OUT THE AREA TO THE SCREEN.

// FILL IN THE CODE THAT WILL RETURN THE PERIMETER FROM A CALL TO A

// FUNCTION AND PRINT OUT THAT VALUE TO THE SCREEN.

return 0;

}

//

//Implementation section Member function implementation

//**

// setSide

//

// task: This procedure takes the length of a side and

// places it in the appropriate member data

// data in: length of a side

//***

void Square::setSide(float length)

{

side = length;

}

Lesson 13A 261

continues

LM_Chp13.qxd 4/24/03 12:49 PM Page 261

//**

// findArea

//

// task: This finds the area of a square

// data in: none (uses value of data member side)

// data returned: area of square

//***

float Square::findArea()

{

return side * side;

}

//**

// findPerimeter

//

// task: This finds the perimeter of a square

// data in: none (uses value of data member side)

// data returned: perimeter of square

//***

float Square::findPerimeter()

{

return 4 * side;

}

Exercise 1: This program asks you to fill in the class declaration and client code
based on the implementation of the member functions. Fill in the code so
that the following input and output will be generated:

Please input the length of the side of the square
8
The area of the square is 64
The perimeter of the square is 32

Exercise 2: Add two constructors and a destructor to the class and create the
implementation of each. One constructor is the default constructor that sets
the side to 1. The other constructor will allow the user to initialize the side
at the definition of the object. The destructor does not have to do anything
but reclaim memory space. Create an object called box1 that gives the value
of 9 to the constructor at the definition. Add output statements so that the
following is printed in addition to what is printed in Exercise 1.

The area of box1 is 81
The perimeter of box1 is 36

262 Introduction to Classes

LM_Chp13.qxd 4/24/03 12:49 PM Page 262

LESSON SET 13

Lab 13.2 Circles as a Class

#include <iostream>

using namespace std;

//

// This program declares a class for a circle that will have

// member functions that set the center, find the area, find

// the circumference and display these attributes.

// The program as written does not allow the user to input data, but

// rather has the radii and center coordinates of the circles

// (spheres in the program) initialized at definition or set by a function.

//class declaration section (header file)

class Circles

{

public:

void setCenter(int x, int y);

double findArea();

double findCircumference();

void printCircleStats(); // This outputs the radius and center of the circle.

Circles (float r); // Constructor

Circles(); // Default constructor

private:

float radius;

int center_x;

int center_y;

};

const double PI = 3.14;

//Client section

int main()

{

Circles sphere(8);

sphere.setCenter(9,10);

sphere.printCircleStats();

cout << "The area of the circle is " << sphere.findArea() << endl;

cout << "The circumference of the circle is "

<< sphere.findCircumference() << endl;

return 0;

}

//

Lesson 13A 263

continues

LM_Chp13.qxd 4/24/03 12:49 PM Page 263

Retrieve program circles.cpp from the Lab 13 folder. The code is as follows:

//Implementation section Member function implementation

Circles::Circles()

{

radius = 1;

}

// Fill in the code to implement the non-default constructor

// Fill in the code to implement the findArea member function

// Fill in the code to implement the findCircumference member function

void Circles::printCircleStats()

// This procedure prints out the radius and center coordinates of the circle

// object that calls it.

{

cout << "The radius of the circle is " << radius << endl;

cout << "The center of the circle is (" << center_x

<< "'" << center_y << ")" << endl;

}

void Circles::setCenter(int x, int y)

// This procedure will take the coordinates of the center of the circle from

// the user and place them in the appropriate member data.

{

center_x = x;

center_y = y;

}

Exercise 1: Alter the code so that setting the center of the circle is also done
during the object definition. This means that the constructors will also take
care of this initialization. Make the default center at point (0, 0) and keep
the default radius as 1. Have sphere defined with initial values of 8 for the
radius and (9, 10) for the center. How does this affect existing functions
and code in the main function?

The following output should be produced:

The radius of the circle is 8
The center of the circle is (9, 10)
The area of the circle is 200.96
The circumference of the circle if 50.24

Exercise 2: There can be several constructors as long as they differ in number
of parameters or data type. Alter the program so that the user can enter
either just the radius, the radius and the center, or nothing at the time the
object is defined. Whatever the user does NOT include (radius or center)
must be initialized somewhere. There is no setRadius function and there
will no longer be a setCenter function. You can continue to assume that
the default radius is 1 and the default center is (0, 0). Alter the client
portion (main) of the program by defining an object sphere1, giving just

264 Introduction to Classes

LM_Chp13.qxd 4/24/03 12:49 PM Page 264

LESSON SET 13

the radius of 2 and the default center, and sphere2 by giving neither the
radius nor the center (it uses all the default values). Be sure to print out
the vital statistics for these new objects (area and circumference).

In addition to the output in Exercise 1, the following output should be included:

The radius of the circle is 2
The center of the circle is (0, 0)
The area of the circle is 12.56
The circumference of the circle is 12.56

The radius of the circle is 1
The center of the circle is (0, 0)
The area of the circle is 3.14
The circumference of the circle is 6.28

Exercise 3: Alter the program you generated in Exercise 2 so that the user will
be allowed to enter either nothing, just the radius, just the center, or both
the center and radius at the time the object is defined. Add to the client
portion of the code an object called sphere3 that, when defined, will have
the center at (15, 16) and the default radius. Be sure to print out this new
object’s vital statistics (area and circumference).

In addition to the output in Exercise 1 and 2, the following output should be
printed:

The radius of the circle is 1
The center of the circle is (15, 16)
The area of the circle is 3.14
The circumference of the circle is 6.28

Exercise 4: Add a destructor to the code. It should print the message This
concludes the Circles class for each object that is destroyed. How many
times is this printed? Why?

L E S S O N 1 3 B

Lab 13.3 Arrays as Data Members of Classes

Retrieve program floatarray.cpp and temperatures.txt from the Lab 13 folder.
The code is as follows:

// This program reads floating point data from a data file and places those

// values into the private data member called values (a floating point array)

// of the FloatList class. Those values are then printed to the screen.

// The input is done by a member function called GetList. The output

// is done by a member function called PrintList. The amount of data read in

// is stored in the private data member called length. The member function

// GetList is called first so that length can be initialized to zero.

#include <iostream>

#include <fstream>

#include <iomanip>

Lesson 13B 265

continues

LM_Chp13.qxd 4/24/03 12:49 PM Page 265

using namespace std;

const int MAX_LENGTH = 50; // MAX_LENGTH contains the maximum length of our list

class FloatList // Declares a class that contains an array of

// floating point numbers

{

public:

void getList(ifstream&); // Member function that gets data from a file

void printList() const; // Member function that prints data from that

// file to the screen.

FloatList(); // constructor that sets length to 0.

~FloatList(); // destructor

private:

int length; // Holds the number of elements in the array

float values[MAX_LENGTH]; // The array of values

};

int main()

{

ifstream tempData; // Defines a data file

// Fill in the code to define an object called list of the class FloatList

cout << fixed << showpoint;

cout << setprecision(2);

tempData.open("temperatures.txt");

// Fill in the code that calls the getList function.

// Fill in the code that calls the printList function.

return 0;

}

FloatList::FloatList()

{

// Fill in the code to complete this constructor that

// sets the private data member length to 0

}

// Fill in the entire code for the getList function

// The getList function reads the data values from a data file

// into the values array of the class FloatList

// Fill in the entire code for the printList function

// The printList function prints to the screen the data in

// the values array of the class FloatList

// Fill in the code for the implementation of the destructor

266 Introduction to Classes

LM_Chp13.qxd 4/24/03 12:49 PM Page 266

LESSON SET 13

This program has an array of floating point numbers as a private data member
of a class. The data file contains floating point temperatures which are read by
a member function of the class and stored in the array.

Exercise 1: Why does the member function printList have a const after its
name but getList does not?

Exercise 2: Fill in the code so that the program reads in the data values from the
temperature file and prints them to the screen with the following output:

78.90
87.40
60.80
70.40
75.60

Exercise 3: Add code (member function, call and function implementation) to
print the average of the numbers to the screen so that the output will look
like the output from Exercise 2 plus the following:

The average temperature is 74.62

Lab 13.4 Arrays of Objects

Retrieve program inventory.cpp and inventory.dat from the Lab 13 folder.
The code is as follows:

#include <iostream>

#include <fstream>

using namespace std;

// This program declares a class called Inventory that has itemnNumber (which

// contains the id number of a product) and numOfItem (which contains the

// quantity on hand of the corresponding product)as private data members.

// The program will read these values from a file and store them in an

// array of objects (of type Inventory). It will then print these values

// to the screen.

// Example: Given the following data file:

// 986 8

// 432 24

// This program reads these values into an array of objects and prints the

// following:

// Item number 986 has 8 items in stock

// Item number 432 has 24 items in stock

const NUMOFPROD = 10; // This holds the number of products a store sells

class Inventory

{

public:

Lesson 13B 267

continues

LM_Chp13.qxd 4/24/03 12:49 PM Page 267

void getId(int item); // This puts item in the private data member

// itemNumber of the object that calls it.

void getAmount(int num); // This puts num in the private data member

// numOfItem of the object that calls it.

void display(); // This prints to the screen

// the value of itemNumber and numOfItem of the

// object that calls it.

private:

int itemNumber; // This is an id number of the product

int numOfItem; // This is the number of items in stock

};

int main()

{

ifstream infile; // Input file to read values into array

infile.open("Inventory.dat");

// Fill in the code that defines an array of objects of class Inventory

// called products. The array should be of size NUMOFPROD

int pos; // loop counter

int id; // variable holding the id number

int total; // variable holding the total for each id number

// Fill in the code that will read inventory numbers and number of items

// from a file into the array of objects. There should be calls to both

// getId and getAmount member functions somewhere in this code.

// Example: products[pos].getId(id); will be somewhere in this code

// Fill in the code to print out the values (itemNumber and numOfItem) for

// each object in the array products.

// This should be done by calling the member function display within a loop

return 0;

}

// Write the implementations for all the member functions of the class.

Exercise 1: Complete the program by giving the code explained in the com-
mands in bold. The data file is as follows:

986 8
432 24
132 100

268 Introduction to Classes

LM_Chp13.qxd 4/24/03 12:49 PM Page 268

LESSON SET 13

123 89
329 50
503 30
783 78
822 32
233 56
322 74

The output should be as follows:

Item number 986 has 8 items in stock
Item number 432 has 24 items in stock
Item number 132 has 100 items in stock
Item number 123 has 89 items in stock
Item number 329 has 50 items in stock
Item number 503 has 30 items in stock
Item number 783 has 78 items in stock
Item number 822 has 32 items in stock
Item number 233 has 56 items in stock
Item number 322 has 74 items in stock

LAB 13.5 Student Generated Code Assignments

Exercise 1: Give a C++ class declaration called SavingsAccount with the
following information:

Operations (Member Functions)

1. Open account (with an initial deposit). This is called to put initial values in
dollars and cents.

2. Make a deposit. A function that will add value to dollars and cents

3. Make a withdrawal. A function that will subtract values from dollars and
cents.

4. Show current balance. A function that will print dollars and cents.

Data (Member Data)

1. dollars

2. cents

Give the implementation code for all the member functions.
NOTE: You must perform normalization on cents. This means that if cents

is 100 or more, it must increment dollars by the appropriate amount. Example:
if cents is 234, then dollars must be increased by 2 and cents reduced to 34.

Write code that will create an object called bank1. The code will then initially
place $200.50 in the account. The code will deposit $40.50 and then withdraw
$100.98. It will print out the final value of dollars and cents.

The following output should be produced:

Dollars = 140 cents = 2.

Part 2: Change the program to allow the user to input the initial values, deposit
and withdrawal.

Lesson 13B 269

LM_Chp13.qxd 4/24/03 12:49 PM Page 269

Example:

Please input the initial dollars
402

Please input the initial cents
78

Would you like to make a deposit? Y or y for yes
y
Please input the dollars to be deposited
35
Please input the cents to be deposited
67
Would you like to make a deposit? Y or y for yes
y
Please input the dollars to be deposited
35
Please input the cents to be deposited
67
Would you like to make a deposit? Y or y for yes
n
Would you like to make a withdrawal Y or y for yes
y
Please input the dollars to be withdrawn
28
Please input the cents to be withdrawn
08
Would you like to make a withdrawal Y or y for yes
y
Please input the dollars to be withdrawn
75
Please input the cents to be withdrawn
78
Would you like to make a withdrawal Y or y for yes
n

Dollars = 370 Cents = 26

Exercise 2: Replace the initial member function by two constructors. One
constructor is the default constructor that sets both dollars and cents to 0.
The other constructor has 2 parameters that set dollars and cents to the
indicated values.

Have the code generate two objects: bank1 (which has its values set during
definition by the user) and bank2 that uses the default constructor. Have
the code input deposits and withdrawals for both bank1 and bank2.

270 Introduction to Classes

LM_Chp13.qxd 4/24/03 12:49 PM Page 270

LESSON SET 13

277

character data type (char), 15, 176
character input, 221
cin statement, 26
class member data, 244
class member function, 244
class name, 244
classes, 244
client, 246
close() function, 220
coercion, 30
comments, 15
compiler, 3–6
computer

program, 2
system, 2

conditional statements, 19, 42
constants, 16
constructor, 255–256

example, 255–256
invoking, 256

control unit, 2
converting algebraic to C++, 30
counter controlled loops, 58
counters, 58
cout statement, 18, 26
cp, 273
c-string, 27
ctype header file, 176

D
data hiding, 246
data types, 16
data type conversions, 30
definitions, 16
decrement operator, 56
default

arguments, 94
constructor, 255
switch, 47

delete operator, 162
dereferences, 158
dereferencing operator, 159
destructor, 256
division operator, 19
do-while, 60

A
abstract data type, 196, 244
access flag, 219
actual parameters, 80, 94
addition operator, 19
algorithm, 2–3
A.L.U., 2
And operator, 45–46
arguments, 94
arithmetic operators, 19
array, 114

and pointers, 161
as arguments, 116
initialization, 115
multi-dimensional, 122
of objects, 258
of structures, 200
one-dimensional, 114
processing, 115
strings, 122
two-dimensional, 121

ASCII text, 224
assignment statement, 18

B
binary, 3
binary digits (bits), 15
binary files, 224
binary search, 140–142
block, 92
boolean data type (bool), 17
bottom test loop, 60
bubble sort, 143–145
byte, 15

C
C++

environment, 6
programming, 14

call (to a function), 77
case sensitive, 16
cd, 273
central processing unit (C.P.U.), 2
character case conversion, 177

Index

LM_Index.qxd 4/24/03 12:55 PM Page 277

dot operator, 197
double data type, 17
drivers, 99–100
dW, 274
dynamic variables, 162

E
end of line marker, 215
endl, 29
eof function, 216
escape sequence, 29
executable (.exe), 4–5
explicit type conversion, 30
expressions, 18, 29
extraction operator, 26

F
files, 31, 214

access flag, 219
as parameters, 220
binary, 224
closing, 220
formatting, 214

in C++, 214
reading, 215–218

find, 273
floating point data type (float), 17
for loop, 61–62
formal parameters, 80, 93
formatted output, 35

fixed, 28
showpoint 28
setprecision, 28

fstream, 31, 214, 219
functions

call, 77–78
main, 76
heading, 77
overloading, 99
pass by value, 78–80
pass by reference, 81–83
procedures, 76, 98
prototype, 78
scope, 92–93
value returning, 66, 96–98
void, 76

fundamental instructions, 17–19

G
get function, 181, 221
getline function, 179, 224
global, 14, 92
grammatical error, 4
grep, 273

278 INDEX

H
hardware, 2
header, 14
header file, 247

cctype, 176
fstream, 214, 224, 311
ifstream, 214
iomanip, 29, 216
iostream, 15, 26
cmath, 30
ofstream, 22, 214

high level languages, 3–4

I
identifiers, 16
if statement, 42
if/else statement, 43
if/else if statement, 43
ifstream, 31, 214
ignore function, 182
implementation, 246
implicit type coercion, 30
include statement, 15
increment operator, 56
infinite loop, 57
inline member functions, 254
inner loop, 63
input, 2

statements, 19
insertion operator, 26
instance, 197, 244
integer data type (int), 16
integrated development environments (IDE), 6
interface, 246–247
I/O, see input and/or output
iomanip, 29 216
ios::app, 219
ios::beg, 229
ios::binary, 219
ios::cur, 229
ios::end, 229
ios::in, 219
ios::out, 219
iostream, 15
isalpha, 184
isdigit, 178
iteratioin, 57

L
library, 4–5
lifetime, 93
linear search, 138–140
linker, 4
linking process, 4
literal, 18

LM_Index.qxd 4/24/03 12:55 PM Page 278

local scope, 92
logic error, 5
logical file name, 214
logical operators, 45–46
long data type, 16–17
loops, 19, 56

do-while, 60–61
for, 61–62
nested, 63
while, 56–58

low level code, 4
ls, 273

M
machine code, 3
main

function, 15, 76
section, 14

man, 274
math library, 30
member data, 196, 244
member function, 244
member of structures, 196
memory

main, 2
storage, 15

methods, 244, 248
mkdir, 274
modularized, 76, 244
modules, 76
modulus operator, 19
multiplication operator, 19
mv, 274

N
ndw, 274
nested if statements, 44–45
nested loops, 63
new operator, 163
Not operator, 46

O
o, 274
O, 274
object code, 4–5
object-oriented programming, 244
objects, 244
ofstream, 31, 214
open function, 214
operating system, 6
Or operator, 46
outer loop, 63
output, 2

statements, 18
overloading functions, 99

INDEX 279

P
parameters, 76

actual, 81
formal, 81

parameter-less functions, 76
pass by reference, 81
pass by value, 81
physical file name, 214
pointer variables, 158
pow(number,exp), 30
precedence rules, 29
prime the read, 216
private data members, 245
procedures, 76
prompt, 27
prototype, 78, 98
ptr, 158
pwd, 274

R
random access files, 228
records, 226
reference variable (also see pass by reference), 158
relational operators, 42
return statement, 96-97
rm, 274
rmdir, 274
run time error, 5

S
search algorithms, 138

linear search, 138–140 See Kp, 228–229
binary search, 140–143 See Kq, 228–229
sequential file access, 228

scope, 92
scope rules, 93
secondary storage, 2
seekg, 229
seekp, 229
selection sort, 145–147
setprecision, 28
setw(), 29, 180
short data type, 16-17
software, 2, 6
sorting algorithms, 142

bubble sort, 143–145
selection sort, 145–147

source code, 4–5
sqrt(), 30
static variables, 94
strcat function, 180
strlen, 179
strcmp function, 181
strcpy function, 181

LM_Index.qxd 4/24/03 12:55 PM Page 279

string constants, 178
string object, 27
strings, 27

as arrays, 179
strlen function, 179
structures, 196

arguments for functions, 204
hierarchical, 202
initializing, 201

stubs, 99–100
subtraction operator, 19
switch statement, 46–47
syntax error, 4

T
tag, 196
tellp, 229
tellq, 229
tolower, 177
top test loop, 60
toupper, 177, 198
trailing else statement, 44

280 INDEX

translate, 3–5
truncated, 30
type casting, 30
type conversion, 30

U
Unix, 273

V
value returning functions, 76, 96–98
variables, 16
vi, 274
visual C++, 271
void functions, 76

W
while loop, 56–58
white space, 27
write function, 224

LM_Index.qxd 4/24/03 12:55 PM Page 280

